
ECE 543: Statistical Learning Theory

Bruce Hajek and Maxim Raginsky

Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Last updated March 18, 2021

Contents

Part 1. Preliminaries 1

Chapter 1. Introduction 2
1.1. A simple example: coin tossing 2
1.2. From estimation to prediction 3
1.3. Goals of learning 7

Chapter 2. Concentration inequalities 11
2.1. The basic tools 11
2.2. The Chernoff bounding trick and Hoeffding’s inequality 13
2.3. From bounded variables to bounded differences: McDiarmid’s inequality 16
2.4. McDiarmid’s inequality in action 18
2.5. Subgaussian random variables 22

Chapter 3. Minima, convexity, strong convexity, and smoothness of functions 24
3.1. The minima of a function 24
3.2. Derivatives of functions of several variables 24
3.3. Convex sets and convex functions 25
3.4. Strongly convex functions 26
3.5. Smooth convex functions 27

Chapter 4. Function spaces determined by kernels 30
4.1. The basics of Hilbert spaces 30
4.2. Reproducing kernel Hilbert spaces 34
4.3. Kernels and weighted inner products 36

Part 2. Basic Theory 43

Chapter 5. Formulation of the learning problem 44
5.1. The realizable case 44
5.2. Examples of PAC-learnable concept classes 48
5.3. Agnostic (or model-free) learning 52
5.4. Empirical risk minimization 56
5.5. The mismatched minimization lemma 60

Chapter 6. Empirical Risk Minimization: Abstract risk bounds and Rademacher
averages 62

6.1. An abstract framework for ERM 62
6.2. Bounding the uniform deviation: Rademacher averages 64
6.3. Structural results for Rademacher averages 67

3

6.4. Spoiler alert: A peek into the next two chapters 70

Chapter 7. Vapnik–Chervonenkis classes 73
7.1. Vapnik–Chervonenkis dimension: definition 73
7.2. Examples of Vapnik–Chervonenkis classes 75
7.3. Growth of shatter coefficients: the Sauer–Shelah lemma 79

Chapter 8. Binary classification 83
8.1. The fundamental theorem of concept learning 83
8.2. Risk bounds for combined classifiers via surrogate loss functions 86
8.3. Weighted linear combination of classifiers 91
8.4. AdaBoost 93
8.5. Neural nets 95
8.6. Kernel machines 101
8.7. Convex risk minimization 106

Chapter 9. Regression with quadratic loss 110
9.1. Constraint regularized least squares in RKHS 111
9.2. Penalty regularized least squares in an RKHS 113

Part 3. Some Applications 115

Chapter 10. Empirical vector quantization 116
10.1. A brief introduction to source coding 116
10.2. Fixed-rate vector quantization 117
10.3. Learning an optimal quantizer 119
10.4. Finite sample bound for empirically optimal quantizers 120

Chapter 11. Dimensionality reduction in Hilbert spaces 125
11.1. Examples 126
11.2. Proof of Theorem 11.1 130
11.3. Linear operators between Hilbert spaces 138

Chapter 12. Stochastic simulation via Rademacher bootstrap 141
12.1. Empirical Risk Minimization: a quick review 142
12.2. Empirical Rademacher averages 143
12.3. Sequential learning algorithms 145
12.4. A sequential algorithm for stochastic simulation 150
12.5. Technical lemma 153

Part 4. Advanced Topics 155

Chapter 13. Stability of learning algorithms 156
13.1. An in-depth view of learning algorithms 157
13.2. Learnability without uniform convergence 159
13.3. Learnability and stability 161
13.4. Stability of stochastic gradient descent 163
13.5. Analysis of Stochastic Gradient Descent 168

4

13.6. Differentially private algorithms and generalization 172
13.7. Technical lemmas 178

Chapter 14. Online optimization algorithms 180
14.1. Online convex programming and a regret bound 180
14.2. Online perceptron algorithm 184
14.3. On the generalization ability of online learning algorithms 185

Chapter 15. Minimax lower bounds 188
15.1. The Bhattacharyya coefficient and bounds on average error for binary

hypothesis testing 191
15.2. Proof of Theorem 15.1 193
15.3. A bit of information theory 195
15.4. Proof of Theorem 15.2 197

Appendix A. Probability and random variables 201

Bibliography 204

Index 207

5

Part 1

Preliminaries

CHAPTER 1

Introduction

1.1. A simple example: coin tossing

Let us start things off with a simple illustrative example. Suppose someone hands you
a coin that has an unknown probability θ of coming up heads. You wish to determine this
probability (coin bias) as accurately as possible by means of experimentation. Experimen-
tation in this case amounts to repeatedly tossing the coin (this assumes, of course, that the
bias of the coin on subsequent tosses does not change, but let’s say you have no reason to
believe otherwise). Let us denote the two possible outcomes of a single toss by 1 (for heads)
and 0 (for tails). Thus, if you toss the coin n times, then you can record the outcomes
as X1, . . . , Xn, where each Xi ∈ {0, 1} and P(Xi = 1) = θ independently of all other Xj’s.
More succinctly, we can write our sequence of outcomes as Xn ∈ {0, 1}n, which is a random
binary n-tuple. This is our sample.

What would be a reasonable estimate of θ? Well, by the Law of Large Numbers we
know that, in a long sequence of independent coin tosses, the relative frequency of heads will
eventually approach the true coin bias with high probability. So, without further ado you
go ahead and estimate θ by

θ̂n(Xn) =
1

n

n∑

i=1

Xi

(recall that each Xi ∈ {0, 1}, so the sum in the above expression simply counts the number

of times the coin came up heads). The notation θ̂n(Xn) indicates the fact that the above
estimate depends on the sample size n and on the entire sample Xn.

How accurate can this estimator be? To answer this question, let us fix an accuracy
parameter ε ∈ [0, 1]. Given θ and n, we can partition the entire set {0, 1}n into two disjoint
sets:

Gn,ε :=
{
xn ∈ {0, 1}n :

∣∣θ̂n(xn)− θ
∣∣ ≤ ε

}

Bn,ε :=
{
xn ∈ {0, 1}n :

∣∣θ̂n(xn)− θ
∣∣ > ε

}
.

As the notation suggests, the n-tuples in Gn,ε are the “good ones:” if our random sequence

of tosses Xn happens to land in Gn,ε, then our estimate θ̂n will differ from the true bias θ by
at most ε in either direction. On the other hand, if Xn lands in Bn,ε, then we will have no
such luck. Of course, since we do not know θ, we have no way of telling whether Xn is in
Gn,ε or in Bn,ε. The best we can do is to compute the probability of a bad sample for each
possible value of θ. This can be done using the so-called Chernoff bound [HR90]

Pn
θ (Bn,ε) ≡ Pn

θ

(∣∣θ̂n(Xn)− θ
∣∣ > ε

)
≤ 2e−2nε2(1.1)

2

(soon you will see where this comes from). Here, Pn
θ denotes the distribution of the random

sample Xn when the probability of heads on each toss is θ. Now, Eq. (1.1) says two things:
(1) For any desired accuracy ε, probability of getting a bad sample decreases exponentially
with sample size n. (2) In order to guarantee that the probability of a bad sample is at most
δ, you will need

n ≥ 1

2ε2
log

(
2

δ

)

coin tosses1. Thus, if you toss the coin at least this many times, then, no matter what θ is,

you can assert with confidence at least 1− δ that θ is somewhere between θ̂n− ε and θ̂n + ε.
This leads to the following

Observation 1.1. For any true value θ of the coin bias,

n(ε, δ) :=

⌈
1

2ε2
log

(
2

δ

)⌉

tosses suffice to guarantee with confidence 1− δ that the estimate θ̂n has accuracy ε.

In view of this observation, we can call the function (ε, δ) 7→ n(ε, δ) the sample complexity
of coin tossing.

This simple example illustrates the essence of statistical learning theory: We wish to learn
something about a phenomenon of interest, and we do so by observing random samples of
some quantity pertaining to the phenomenon. There are two basic questions we can ask:

(1) How large of a sample do we need to achieve a given accuracy with a given confi-
dence?

(2) How efficient can our learning algorithm be?

Statistical learning theory [Vap98, Vid03] primarily concerns itself with the first of these
questions, while the second question is within the purview of computational learning theory
[Val84, KV94]. However, there are some overlaps between these two fields. In particular, we
can immediately classify learning problems into easy and hard ones by looking at how their
sample complexity grows as a function of 1/ε and 1/δ. In general, an easy problem is one
whose sample complexity is polynomial in 1/ε and polylogarithmic in 1/δ (“polylogarithmic”
means polynomial in log(1/δ)). Of course, there are other factors that affect the sample
complexity, and we will pay close attention to those as well.

1.2. From estimation to prediction

The coin tossing example of Section 1.1 was concerned with estimation. In fact, esti-
mation was the focus of classical statistics, with early works dating back to Gauss, Laplace
and the numerous members of the Bernoulli clan (the book by Stigler [Sti86] is an excellent
survey of the history of statistics, full of amusing anecdotes and trivia, and much historical
and scientific detail besides). By contrast, much of statistical learning theory (and much
of modern statistics too) focuses on prediction (see the book by Clarke, Fokoué and Zhang
[CFZ09] for a comprehensive exposition of the predictive view of statistical machine learning
and data mining). In a typical prediction problem, we have two jointly distributed random

1Unless stated otherwise, log will always denote natural logarithms (base e).

3

variables2 X and Y , where only X is available for observation, and we wish to devise a means
of predicting Y on the basis of this observation. Thus, a predictor is any well-behaved3 func-
tion from X (the domain of X) into Y (the domain of Y). For example, in medical diagnosis,
X might record the outcomes of a series of medical tests and other data for a single patient,
while Y ∈ {0, 1} would correspond to the patient either having or not having a particular
health issue.

The basic premise of statistical learning theory is that the details of the joint distribution
P of X and Y are vague (or even completely unknown), and the only information we have
to go on is a sequence of n independent observations (X1, Y1), . . . , (Xn, Yn) drawn from P .
Assuming we have a quantitative criterion by which to judge a predictor’s accuracy, the same
basic question presents itself: How large does the sample {(Xi, Yi)}ni=1 have to be in order
for us to be able to construct a predictor achieving a given level of accuracy and confidence?

Of course, not all learning problems involve prediction. For example, problems like
clustering, density estimation, feature (or representation) learning do not. We will see later
that the mathematical formalism of statistical learning theory is flexible enough to cover
such problems as well. For now, though, let us focus on prediction to keep things concrete.
To get a handle on the learning problem, let us first examine the ideal situation, in which
the distribution P is known.

1.2.1. Binary classification. The simplest prediction problem is that of binary clas-
sification (also known as pattern classification or pattern recognition) [DGL96]. In a typical
scenario, X is a subset of Rp, the p-dimensional Euclidean space, and Y = {0, 1}. A predictor
(or a classifier) is any mapping f : X→ {0, 1}. A standard way of evaluating the quality of
binary classifiers is by looking at their probability of classification error. Thus, for a classifier
f we define the classification loss (or risk)

LP (f) := P(f(X) 6= Y) ≡
∫

X×{0,1}
1{f(x)6=y}P (dx, dy),

where 1{·} is the indicator function taking the value 1 if the statement in the braces is true,
and 0 otherwise. What is the best classifier for a given P? The answer is given by the
following

Proposition 1.1. Given the joint distribution P on X × {0, 1}, let η(x) := E[Y |X =
x] ≡ P(Y = 1|X = x). Then the classifier

f ∗P (x) :=

{
1, if η(x) ≥ 1/2

0, otherwise
(1.2)

minimizes the probability of classification error over all f : X→ {0, 1}, i.e.,

LP (f ∗P) = min
f :X→{0,1}

LP (f).

2Please consult Appendix A for basic definitions and notation pertaining to probability distributions
and random variables.

3In fancy language, “well-behaved” will typically mean “measurable” with respect to appropriate σ-fields
defined on X and Y. We will ignore measurability issues in this course.

4

Remark 1.1. Some terminology: The function η defined above is called the regression
function, the classifier in (1.2) is called the Bayes classifier, and its risk

L∗P := LP (f ∗P)

is called the Bayes rate.

Proof. Consider an arbitrary classifier f : X→ {0, 1}. Then

LP (f) =

∫

X×{0,1}
1{f(x) 6=y}P (dx, dy)

=

∫

X

PX(dx)
{
PY |X(1|x)1{f(x)6=1} + PY |X(0|x)1{f(x)6=0}

}

=

∫

X

PX(dx)
{
η(x)1{f(x)6=1} + (1− η(x))1{f(x)6=0}

}
︸ ︷︷ ︸

:=`(f,x)

,(1.3)

where we have used Eq. (1.2.1), the factorization P = PX × PY |X , and the definition of η.
From the above, it is easy to see that, in order to minimize LP (f), it suffices to minimize
the term `(f, x) in (1.3) separately for each value of x ∈ X. If we let f(x) = 1, then
`(f, x) = 1−η(x), while for f(x) = 0 we will have `(f, x) = η(x). Clearly, we should set f(x)
to 1 or 0, depending on whether 1− η(x) ≤ η(x) or not. This yields the rule in (1.2). �

1.2.2. Minimum mean squared error prediction. Another prototypical example
of a prediction problem is minimum mean squared error (MMSE) prediction [CZ07], where
X ⊆ Rp, Y ⊆ R, and the admissible predictors are functions f : X→ R. The quality of such
a predictor f is measured by the MSE

LP (f) := E(f(X)− Y)2 ≡
∫

X×Y
(f(x)− y)2P (dx, dy).

The MMSE predictor is characterized by the following

Proposition 1.2. Given the joint distribution P on X×Y with X ⊆ Rp and Y ⊆ R, the
regression function f ∗P (x) := E[Y |X = x] is the MMSE predictor. Moreover, for any other
predictor f we have

LP (f) = ‖f − f ∗P‖2
L2(PX) + L∗P ,

where for any function g : X→ R

‖g‖2
L2(PX) :=

∫

X

|g(x)|2PX(dx) ≡ E|g(X)|2

is the squared L2 norm with respect to the marginal distribution PX , and L∗P := LP (f ∗P).

Proof. Consider an arbitrary predictor f : X→ R. Then

LP (f) = E(f(X)− Y)2

= E(f(X)− f ∗P (X) + f ∗P (X)− Y)2

= E(f(X)− f ∗P (X))2 + 2E[(f(X)− f ∗P (X))(f ∗P (X)− Y)] + E(f ∗P (X)− Y)2

= ‖f − f ∗P‖2
L2(PX) + 2E[(f(X)− f ∗P (X))(f ∗P (X)− Y)] + L∗P .

5

Let us analyze the second (cross) term. Using the law of iterated expectation, we have

E[(f(X)− f ∗P (X))(f ∗P (X)− Y)] = E
[
E[(f(X)− f ∗P (X))(f ∗P (X)− Y)|X]

]

= E
[
(f(X)− f ∗P (X))E[(f ∗P (X)− Y)|X]

]

= E
[
(f(X)− f ∗P (X))(f ∗P (X)− E[Y |X])

]

= 0,

where in the last step we used the definition f ∗P (x) := E[Y |X = x]. Thus,

LP (f) = ‖f − f ∗P‖2
L2(PX) + L∗P ≥ L∗P ,

where equality holds if and only if f = f ∗X (with PX-probability one). �

1.2.3. A general prediction problem. In the general case, X and Y are arbitrary
sets, admissible predictors are functions f : X→ Y (or, more generally, f : X→ U for some
suitable prediction space U), and the quality of a predictor f on a pair (x, y) ∈ X × Y is
judged in terms of some fixed loss function ` : U× Y → R by `(f(x), y), the loss incurred in
predicting the true y by û = f(x). The expect loss, or risk, of f is then

LP (f) := E[`(f(X), Y)] ≡
∫

X×Y
`(f(x), y)P (dx, dy).

This set-up covers the two previous examples:

(1) If X ⊆ Rp, Y = U = {0, 1}, and `(u, y) := 1{u6=y}, then we recover the binary
classification problem.

(2) If X ⊆ Rp, Y ⊆ R = U, and `(u, y) := (u−y)2, then we recover the MMSE prediction
problem.

Given P and `, we define the minimum risk

L∗P := inf
f :X→U

E[`(f(X), Y)],(1.4)

where we use inf instead of min since there may not be a minimizing f (when that happens,
one typically picks some small ε > 0 and seeks ε-minimizers, i.e., any f ∗ε : X→ U, such that

LP (f ∗ε) ≤ LP (f) + ε(1.5)

for all f : X → U). We will just assume that a minimizer exists, but continue to use inf to
keep things general.

Thus, an abstract prediction problem is characterized by three objects: a probability
distribution P of (X, Y) ∈ X × Y, a class of admissible predictors f : X → U, and a loss
function ` : U × Y → R. The solution to the prediction problem is any f ∗P that attains the
infimum in (1.4) (or comes ε-close as in (1.5)). Once such a f ∗P is computed, we can use it to

predict the output Y ∈ Y for any given input X ∈ X by Ŷ = f ∗P (X), where the interpretation
is that the random couple (X, Y) ∼ P pertains to the phenomenon of interest, X corresponds
to its observable aspects, and Y corresponds to some unobservable characteristic that we
may want to ascertain.

6

1.3. Goals of learning

We will close our introduction to statistical learning theory by a rough sketch of the
“goals of learning” in a random environment. Please keep in mind that this is not meant to
be a definitive treatment, which will come later in the course.

So far we have discussed the “ideal” case when the distribution P of (X, Y) is known.
Statistical learning theory deals with the setting where our knowledge of P is only partial (or
nonexistent), but we have access to a training sample (X1, Y1), . . . , (Xn, Yn) of independent
draws from P . Formally, we say that the pairs (Xi, Yi), 1 ≤ i ≤ n, are independent and
identically distributed (i.i.d.) according to P , and we often write this as

(Xi, Yi)
i.i.d.∼ P, i = 1, . . . , n.

To keep the notation simple, let us denote by Z the product space X×Y and let Zi = (Xi, Yi)
for each i. Our training sample is then Zn = (Z1, . . . , Zn) ∈ Zn. Roughly speaking, the goal

of learning is to take Zn as an input and to produce a candidate predictor f̂n : X → U as

an output. Note that since Zn is a random variable, so is f̂n. A learning algorithm (or a
learner) is a procedure that can do this for any sample size n. Thus, a learning algorithm is
a box for converting training samples into predictors.

Let’s suppose that we have some learning algorithm to play with. Given a sample Zn of

size n, it outputs a candidate predictor f̂n. How good is this predictor? Well, let’s suppose
that someone (say, Nature) hands us a fresh independent sample Z = (X, Y) from the

same distribution P that has generated the training sample Zn. Then we can test f̂n by

applying it to X and seeing how close Û = f̂n(X) is to Y by computing the instantaneous

loss `(Û , Y) ≡ `(f̂n(X).Y). The expectation of the instantaneous loss w.r.t. the (unknown)
distribution P ,

LP (f̂n) ≡
∫

X×Y
`(f̂n(x), y)P (dx, dy),(1.6)

is called the generalization error of the learner at sample size n. It is crucial to note that

LP (f̂n) is a random variable, since f̂n is a function of the random sample Zn. In fact, to
be more precise, we should write the generalization error as the conditional expectation

E[`(f̂n(X), Y)|Zn], but since Z = (X, Y) is assumed to be independent from Zn, we get
(1.6).

Now, we will say that our learner has done a good job when its generalization error is
suitably small. But how small can it be? To answer this question (or at least to point towards
a possible answer), we must first agree that learning without any initial assumptions is a
futile task. For example, consider fitting a curve to a training sample (X1, Y1), . . . , (Xn, Yn),
where both the Xi’s and the Yi’s are real numbers. A simple-minded approach would be to
pick any curve that precisely agreed with the entire sample – in other words, to select some

f̂n, such that f̂n(Xi) = Yi for all i = 1, . . . , n. We say that any such f̂n interpolates the data.
But there is an uncountable infinity of such functions! Which one should we choose? The
answer is, of course, there is no way to know, if only because we have no clue about P ! We
could pick a very smooth function, but it could very well happen that the optimal f ∗P tends
to be smooth for some values of the input and rough for some others. Alternatively, we could

7

choose a very wiggly and complicated curve, but then it might just be the case that f ∗P is
really simple.

A way out of this dilemma is to introduce what is known in the artificial intelligence
community as an inductive bias. We go about it by restricting the space of candidate
predictors our learner is allowed to search over to some suitable family H, which is typically

called the hypothesis space. Thus, we stipulate that f̂n ∈ H for any sample Zn. Given P ,
let us define the minimum risk over H:

L∗P (H) := inf
f∈H

LP (f).(1.7)

Clearly, L∗P (H) ≥ L∗P , since the latter involves minimization over a larger set. However,
now, provided the hypothesis space H is “manageable,” we may actually hope to construct
a learner that would guarantee that

LP (f̂n) ≈ L∗P (H) with high probability.(1.8)

Then, if we happen to be so lucky that f ∗P is actually in H, we will have attained the Holy
Grail, but even if we are not so lucky, we may still be doing pretty well. To get a rough idea

of what is involved, let us look at the excess risk of f̂n relative to the best predictor f ∗P :

EP (f̂n) := LP (f̂n)− L∗P = LP (f̂n)− L∗P (H)︸ ︷︷ ︸
Eest

+L∗P (H)− L∗P︸ ︷︷ ︸
Eapprox

.(1.9)

If the learner is good in the sense of (1.8), then we will have

EP (f̂n) ≈ L∗P (H)− L∗P with high probability,

which, in some sense, is the next best thing to the Holy Grail, especially if we can choose
H so well that we can guarantee that the difference L∗P (H) − L∗P is small for any possible
choice of P .

Recently, however, the following curious fact was pointed out [BHM18, BRT19]: In

some situations, it is in fact possible to construct an explicit predictor f̂n that interpolates

the data, i.e., f̂n(Xi) = Yi for all i = 1, . . . , n, and yet performs well out of sample. This,

however, requires dropping the requirement that f̂n be an element of H (this is referred to
as improper learning). In the context of curve fitting, for instance, one can construct an

interpolating f̂n with the property that

lim
n→∞

E[(f̂n(X)− η(X))2] = 0

whenever the regression function η belongs to a certain hypothesis class H, and thus

E[LP (f̂n)]− inf
f∈H

E[LP (f)] = E[(f̂n(X)− η(X))2]
n→∞−−−→ 0

where the expectation is taken with respect to both the training data (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼

P and the fresh independent sample (X, Y) ∼ P . This phenomenon, where there is no
adverse effect of interpolation on out-of-sample performance, is relevant in the context of
learning using deep neural nets.

Note the decomposition of the excess risk into two terms, denoted in (1.9) by Eest and

Eapprox. The first term, Eest, depends on the learned predictor f̂n, as well as on the hypothesis
class H, and is referred to as the estimation error of the learner. The second term, Eapprox,

8

depends only on H and on P , and is referred to as the approximation error of the hypothesis
space. Most of the effort in statistical learning theory goes into analyzing and bounding
the estimation error for various choices of H. Analysis of Eapprox is the natural domain of
approximation theory. The overall performance of a given learning algorithm depends on
the interplay between these two sources of error. The text by Cucker and Zhou [CZ07] does
a wonderful job of treating both the estimation and the approximation aspects of learning
algorithms.

1.3.1. Beyond prediction. As we had briefly pointed out earlier, not all learning prob-
lems involve prediction. Luckily, the mathematical formalism we have just introduced can
be easily adapted to a more general view of learning (details are in Chapter 6). Consider
a random object Z taking values in some space Z according to an unknown distribution P .
Suppose that there is a very large class F of functions f : Z→ R, and for each f ∈ F we can
define its expected loss (or risk)

LP (f) := E[f(Z)] =

∫

Z

f(z)P (dz).(1.10)

Suppose also that F has the property that there exists at least one f ∗P ∈ F that achieves

LP (f ∗P) = inf
f∈F

LP (f).(1.11)

The class F may even depend on P . Let’s see how we can describe some unsupervised
learning problems in this way:

• Density estimation. Suppose that Z ⊆ Rd for some d, and that P has a probability
density function (pdf) p. We can construct a suitable class F as follows: pick a
nonnegative function ` : R × R → R+, and let F = FP,` consist of all functions of
the form

fq(z) = `
(
p(z), q(z)

)
,(1.12)

as q ranges over a suitable class of pdf’s q on Rd. Then

LP (fq) = EP

[
`
(
p(Z), q(Z)

)]
=

∫

Rd
p(z)`

(
p(z), q(z)

)
dz.(1.13)

This is fairly general. For example, if we assume that p > 0 on Z, then we can let

`(u, u′) =
∣∣u′
u
− 1
∣∣2, in which case we recover the L2 criterion:

LP (fq) =

∫

Z

p(z)

∣∣∣∣
q(z)

p(z)
− 1

∣∣∣∣
2

dz = ‖p− q‖2
L2 ,

known as Chi-squared divergence, χ2(q‖p). Or we can let `(u, u′) = log(u/u′), which
gives us the relative entropy (also known as the Kullback–Leibler divergence):

LP (fq) =

∫

Z

p(z) log
p(z)

q(z)
dz = D(p‖q).

• Clustering. In a basic form of the clustering problem, we seek a partition of the
domain Z of interest into a fixed number, say k, of disjoint clusters C1, . . . ,Ck,
such that all points z that belong to the same cluster are somehow “similar.” For
example, we may define a distance function d : Z × Z → R+ and represent each

9

cluster Cj, 1 ≤ j ≤ k, by a single “representative” vj ∈ Z. A clustering C is then

described by k pairs {(Cj, vj)}kj=1, where Z =
⋃k
j=1 Cj. Consider the class F = Fk

of all functions of the form

fC(z) =
k∑

j=1

1{z∈Cj}d(z, vj)

as C runs over all clusterings {(Cj, vj)}kj=1. We can then evaluate the quality of our
clustering C by looking at the expectation

LP (fC) = EP

[
k∑

j=1

1{Z∈Cj}d(Z, vj)

]

• Feature learning. Broadly speaking, feature learning refers to constructing a
representation of the original input Z that could be fed to a supervised learning
algorithm further down the line. There could be multiple reasons for wanting to
do this, ranging from computational considerations to a desire to capture “salient”
characteristics of the data that could be relevant for prediction, while “factoring

out” the irrelevant parts. Mathematically, a feature is a mapping ϕ : Z → Z̃ into

some other representation space Z̃, so that each point z ∈ Z is represented z̃ = ϕ(z),
and it is this representation that will be used by another learning algorithm down
the line. (Ideally, good feature representations should be agnostic with respect to
the nature of the learning problem where they will be used.) One way to score the

quality of a feature is to consider a loss function of the form ` : Z × Z̃ → R+, so
that `(z, z̃) is small if z is well-represented by z̃. Then, for a fixed collection Φ of
candidate feature maps, we could consider a class F = FΦ,` of functions of the form

fϕ(z) = `
(
z, ϕ(z)

)
, ϕ ∈ Φ.

This is a very wide umbrella that can cover a wide variety of unsupervised learning
tasks (e.g., clustering).

These examples show that unsupervised learning problems can also be formulated in terms
of minimizing an appropriately defined expected loss. The only difference is that the loss
function may sometimes depend on the underlying distribution, which is unknown. However,
under suitable assumptions on the problem components, it is often possible to find an alter-
native hypothesis space H which (unlike F) does not depend on P , such that the minimum
expected loss L∗P (F) can be related to the minimum expected loss L∗P (H). Just as before,
a learning algorithm is a rule for mapping an i.i.d. sample Zn = (Z1, . . . , Zn) from P to an

element f̂n ∈ H. The objective is also the same as before: ensure that

LP (f̂n) ≈ L∗P (H) with high probability.

Thus, we can treat supervised learning and unsupervised learning on the same footing.

10

CHAPTER 2

Concentration inequalities

In the previous chapter, the following result was stated without proof. If X1, . . . , Xn

are independent Bernoulli(θ) random variables representing the outcomes of a sequence of n
tosses of a coin with bias (probability of heads) θ, then for any ε ∈ (0, 1)

P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)
≤ 2e−2nε2(2.1)

where

θ̂n =
1

n

n∑

i=1

Xi

is the fraction of heads in Xn = (X1, . . . , Xn). Since θ = Eθ̂n, (2.1) says that the sample (or
empirical) average of the Xi’s concentrates sharply around the statistical average θ = EX1.
Bounds like these are fundamental in statistical learning theory. In this chapter, we will
learn the techniques needed to derive such bounds for settings much more complicated than
coin tossing. This is not meant to be a complete picture; a detailed treatment can be found
in the excellent recent book by Boucheron, Lugosi, and Massart [BLM13].

2.1. The basic tools

We start with Markov’s inequality: Let Y ∈ R be a nonnegative random variable. Then
for any t > 0 we have

P(Y ≥ t) ≤ EY

t
.(2.2)

The proof is simple:

P(Y ≥ t) = E[1{Y≥t}](2.3)

≤ E[Y 1{Y≥t}]

t
(2.4)

≤ EY

t
,(2.5)

where:

• (2.3) uses the fact that the probability of an event can be expressed as the expec-
tation of its indicator function:

P(Y ∈ A) =

∫

A

PY (dy) =

∫

Y

1{x∈A}PY (dy) = E[1{Y ∈A}]

• (2.4) uses the fact that

Y ≥ t > 0 =⇒ Y

t
≥ 1

11

• (2.5) uses the fact that

Y ≥ 0 =⇒ Y 1{Y≥t} ≤ Y,

so consequently E[Y 1{Y≥t}] ≤ EY .

Markov’s inequality leads to our first bound on the probability that a random variable
deviates from its expectation by more than a given amount: Chebyshev’s inequality. Let X
be an arbitrary real random variable. Then for any t > 0

P (|X − EX| ≥ t) ≤ Var[X]

t2
,(2.6)

where VarX := E[|X − EX|2] = EX2 − (EX)2 is the variance of X. To prove (2.6), we
apply Markov’s inequality (2.2) to the nonnegative random variable Y = |X − EX|2:

P (|X − EX| ≥ t) = P
(
|X − EX|2 ≥ t2

)
(2.7)

≤ E|X − EX|2
t2

,(2.8)

where the first step uses the fact that the function φ(x) = x2 is monotonically increasing on
[0,∞), so that a ≥ b ≥ 0 if and only if a2 ≥ b2.

Now let’s apply these tools to the problem of bounding the probability that, for a coin
with bias θ, the fraction of heads in n trials differs from θ by more than some ε > 0. To that
end, let us represent the outcomes of the n tosses by n independent Bernoulli(θ) random
variables X1, . . . , Xn ∈ {0, 1}, where P(Xi = 1) = θ for all i. Let

θ̂n =
1

n

n∑

i=1

Xi.

Then

Eθ̂n = E

[
1

n

n∑

i=1

Xi

]
=

1

n

n∑

i=1

EXi︸︷︷︸
=P(Xi=1)

= θ

and

Var[θ̂n] = Var

[
1

n

n∑

i=1

Xi

]
=

1

n2

n∑

i=1

Var[Xi] =
θ(1− θ)

n
,

where we have used the fact that the Xi’s are i.i.d., so Var[X1 + . . .+Xn] =
∑n

i=1 VarXi =
nVarX1. Now we are in a position to apply Chebyshev’s inequality:

P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)
≤ Var[θ̂n]

ε2
=
θ(1− θ)
nε2

.(2.9)

At the very least, (2.9) shows that the probability of getting a bad sample decreases with
sample size. Unfortunately, it does not decrease fast enough. To see why, we can appeal to
the Central Limit Theorem, which (roughly) states that

P

(√
n

θ(1− θ)
(
θ̂n − θ

)
≥ t

)
n→∞−−−→ 1− Φ(t) ≤ 1√

2π

e−t
2/2

t
,

12

where Φ(t) = (1/
√

2π)
∫ t
−∞ e

−x2/2dx is the standard Gaussian CDF. This would suggest
something like

P
(
θ̂n − θ ≥ ε

)
≈ exp

(
− nε2

2θ(1− θ)

)
,

which decays with n much faster than the right-hand side of (2.9),

2.2. The Chernoff bounding trick and Hoeffding’s inequality

To fix (2.9), we will use a very powerful technique, known as the Chernoff bounding trick
[Che52]. Let X be real-valued random variable. Suppose we are interested in bounding the
probability P(X ≥ EX + t) for some particular t > 0. Observe that for any s > 0 we have

P(X ≥ EX + t) = P
(
es(X−EX) ≥ est

)
≤ e−stE

[
es(X−EX)

]
,(2.10)

where the first step is by monotonicity of the function φ(x) = esx and the second step is by
Markov’s inequality (2.2). The Chernoff trick is to choose an s > 0 that would make the
right-hand side of (2.10) suitably small. In fact, since (2.10) holds simultaneously for all
s > 0, the optimal thing to do is to take the infimum of the bound over s > 0:

P(X ≥ EX + t) ≤ inf
s>0

e−stE
[
es(X−EX)

]
.

However, often a good upper bound on the moment-generating function E
[
es(X−EX)

]
is

enough. One such bound was developed by Hoeffding [Hoe63] for the case when X is
bounded with probability one:

Lemma 2.1 (Hoeffding). Let X be a random variable, such tha P(a ≤ X ≤ b) = 1 for
some −∞ < a ≤ b <∞. Then for all s > 0

E
[
es(X−EX)

]
≤ es

2(b−a)2/8.(2.11)

To prove the lemma, we first start with a useful bound on the variance of a bounded
random variable:

Lemma 2.2. If U is a random variable such that P(a ≤ U ≤ b), then

Var[U] ≤ (b− a)2

4
.(2.12)

Proof. We use the fact that, for any real-valued random variable U ,

Var[U] ≤ E[(U − c)2], ∀c ∈ R.(2.13)

(In particular c = EU achieves equality in the above bound.) Now let c = a+b
2

, the midpoint
of the interval [a, b]. Then, since a ≤ U ≤ b almost surely, we know that

|U − c| ≤ b− a
2

.

Using this c in (2.13), we obtain Var[U] ≤ E[(U − c)2] ≤ (b−a)2

4
, as claimed. �

13

Remark 2.1. The bound of Lemma 2.2 is actually sharp: consider

U =

{
a, with prob. 1/2

b, with prob. 1/2
.

Then

Var[U] = EU2 − (EU)2 =
a2 + b2

2
−
(
a+ b

2

)2

=
(b− a)2

4
.

Now we can prove Hoeffding’s lemma:

Proof (of Lemma 2.1). Without loss of generality, we may assume that EX = 0.
Thus, we are interested in bounding E[esX]. Let’s consider instead the logarithmic moment-
generating function

ψ(s) := log E[esX].

Then

ψ′(s) =
E[XesX]

E[esX]
, ψ′′(s) =

E[X2esX]

E[esX]
−
[

E[XesX]

E[esX]

]2

.(2.14)

(we are being a bit loose here, assuming that we can interchange the order of differentiation
and expectation, but in this case everything can be confirmed rigorously). Now consider
another random variable U whose distribution is related to X by

E[f(U)] =
E[f(X)esX]

E[esX]
(2.15)

for any real-valued function f : R → R. To convince ourselves that this is a legitimate
construction, let’s plug in an indicator function of any event A:

P[U ∈ A] = E[1{U∈A}] =
E[1{X∈A}e

sX]

E[esX]
.(2.16)

It is then not hard to show that this is indeed a valid probability measure. This construction
is known as the twisting (or tilting) technique or as exponential change of measure.

We note two things:

(1) Using (2.16) with A = [a, b], we get

P[a ≤ U ≤ b] =
E[1{a≤X≤b}e

sX]

E[esX]
= 1,(2.17)

since a ≤ X ≤ b. Moreover, if A is any event in the complement of [a, b], then
P[U ∈ A] = 0, since E[1{X∈A}e

sX] = 0. That is, U is bounded between a and b with
probability one, just like X.

(2) Using (2.15) first with f(U) = U and then with f(U) = U2, we get

E[U] =
E[XesX]

E[esX]
, E[U2] =

E[X2esX]

E[esX]
.(2.18)

14

Comparing the expressions in (2.18) with (2.14), we observe that ψ′′(s) = Var[U]. Now,

since a ≤ U ≤ B, it follows from Lemma 2.2 that ψ′′(s) ≤ (b−a)2

4
. Therefore,

ψ(s) =

∫ s

0

∫ t

0

ψ′′(v)dvdt ≤ s2(b− a)2

8
,

where we have used the fact that ψ′(0) = ψ(0) = 0. Exponentiating both sides, we are
done. �

We will now use the Chernoff method and the above lemma to prove the following

Theorem 2.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables,
such that Xi ∈ [ai, bi] with probability one. Let Sn :=

∑n
i=1Xi. Then for any t > 0

P (Sn − ESn ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
;(2.19)

P (Sn − ESn ≤ −t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.(2.20)

Consequently,

P (|Sn − ESn| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.(2.21)

Proof. By replacing each Xi with Xi − EXi, we may as well assume that EXi = 0.
Then Sn =

∑n
i=1Xi. Using Chernoff’s trick, for s > 0 we have

P (Sn ≥ t) = P
(
esSn ≥ est

)
≤ e−stE

[
esSn

]
.(2.22)

Since the Xi’s are independent,

E
[
esSn

]
= E

[
es(X1+...+Xn)

]
= E

[
n∏

i=1

esXi

]
=

n∏

i=1

E
[
esXi

]
.(2.23)

Since Xi ∈ [ai, bi], we can apply Lemma 2.1 to write E
[
esXi

]
≤ es

2(bi−ai)2/8. Substituting
this into (2.23) and (2.22), we obtain

P (Sn ≥ t) ≤ e−st
n∏

i=1

es
2(bi−ai)2/8

= exp

(
−st+

s2

8

n∑

i=1

(bi − ai)2

)

If we choose s = 4t∑n
i=1(bi−ai)2 , then we obtain (2.19). The proof of (2.20) is similar. �

Now we will apply Hoeffding’s inequality to improve our crude concentration bound
(2.9) for the sum of n independent Bernoulli(θ) random variables, X1, . . . , Xn. Since each
Xi ∈ {0, 1}, we can apply Theorem 2.1 to get, for any t > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi − nθ
∣∣∣∣∣ ≥ t

)
≤ 2e−2t2/n.

15

Therefore,

P
(∣∣∣θ̂n − θ

∣∣∣ ≥ ε
)

= P

(∣∣∣∣∣
n∑

i=1

Xi − nθ
∣∣∣∣∣ ≥ nε

)
≤ 2e−2nε2 ,

which gives us the claimed bound (2.1).
Theorem 2.1 extends with essentially the same proof to the case that the random variables

X1, . . . , Xn are not necessarily independent, but form a martingale difference sequence, or,
equivalently, the partial sums Yk = X1 + . . . + Xk form a martingale. A random process
(Yn : n ≥ 0) is a martingale with respect to a filtration of σ-algebras FFF = (Fn : n ≥ 0) if
E [Y0] is finite, Yn is Fn measurable for each n ≥ 0, and E[Yn+1|Fn] = Yn. A random process
(Bn : n ≥ 1), is a predictable process for the filtration FFF if Bn is Fn−1 measurable for each
n ≥ 1.

Theorem 2.2 (Azuma-Hoeffding inequality with centering).) Let (Yn : n ≥ 0) be a
martingale and (Bn : n ≥ 1) be a predictable process, both with respect to a filtration FFF =
(Fn : n ≥ 0), such that P{|Yn −Bn| ≤ cn/2} = 1 for all n ≥ 0. Then

P{Yn − Y0 ≥ t} ≤ exp

(
− 2t2∑n

i=1 c
2
i

)

P{Yn − Y0 ≤ −t} ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

2.3. From bounded variables to bounded differences: McDiarmid’s inequality

Hoeffding’s inequality applies to sums of independent random variables. We will now
develop its generalization, due to McDiarmid [McD89], to arbitrary real-valued functions of
independent random variables that satisfy a certain condition.

Let X be some set, and consider a function g : Xn → R. We say that g has bounded
differences if there exist nonnegative numbers c1, . . . , cn, such that

sup
x∈X

g(x1, . . . , xi−1, x, xi+1, . . . , xn)− inf
x∈X

g(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ ci(2.24)

for all i = 1, . . . , n and all x1, . . . , xi−1, xi+1, . . . , xn ∈ X. In words, if we change the ith
variable while keeping all the others fixed, the value of g will not change by more than ci.

Theorem 2.3 (McDiarmid’s inequality [McD89]). Let Xn = (X1, . . . , Xn) ∈ Xn be an
n-tuple of independent X-valued random variables. If a function g : Xn → R has bounded
differences, as in (2.24), then, for all t > 0,

P (g(Xn)− Eg(Xn) ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
;(2.25)

P (Eg(Xn)− g(Xn) ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.(2.26)

Proof. Let us first sketch the general idea behind the proof. Let Z = g(Xn) and
V = Z − EZ. The first step will be to write V as a sum

∑n
i=1 Vi, where the terms Vi are

constructed so that:

(1) Vi is a function only of X i = (X1, . . . , Xi), and E[Vi|X i−1] = 0.

16

(2) There exist functions Ai, Bi : Xi−1 → R such that, conditionally on X i−1,

Ai(X
i−1) ≤ Vi ≤ Bi(X

i−1),

and, moreover, Bi(X
i−1)− Ai(X i−1) ≤ ci.

Provided we can arrange things in this way, we can apply Lemma 2.1 to Vi conditionally on
X i−1:

E
[
esVi
∣∣X i−1

]
≤ es

2c2i /8.(2.27)

Then, using Chernoff’s method, we have

P (Z − EZ ≥ t) = P(V ≥ t)

≤ e−stE
[
esV
]

= e−stE
[
es

∑n
i=1 Vi

]

= e−stE
[
es

∑n−1
i=1 ViesVn

]

= e−stE
[
es

∑n−1
i=1 ViE

[
esVn

∣∣∣Xn−1
]]

≤ e−stes
2c2n/8E

[
es

∑n−1
i=1 Vi

]
,

where in the next-to-last step we used the fact that V1, . . . , Vn−1 depend only on Xn−1, and
in the last step we used (2.27) with i = n. If we continue peeling off the terms involving
Vn−1, Vn−2, . . . , V1, we will get

P (Z − EZ ≥ t) ≤ exp

(
−st+

s2

8

n∑

i=1

c2
i

)
.

Taking s = 4t/
∑n

i=1 c
2
i , we end up with (2.25).

It remains to construct the Vi’s with the desired properties. To that end, let

Vi = E[Z|X i]− E[Z|X i−1],

where E[Z|X0] = EZ, and, by telescoping,

n∑

i=1

Vi =
n∑

i=1

{
E[Z|X i]− E[Z|X i−1]

}
= E[Z|Xn]− EZ = Z − EZ = V.

Note that Vi depends only on X i by construction, and that

E[Vi|X i−1] = E
[
E[Z|X i]− E[Z|X i−1]

∣∣∣X i−1
]

= E
[
E[Z|X i−1, Xi]

∣∣∣X i−1
]
− E[Z|X i−1]

= E[Z|X i−1]− E[Z|X i−1]

= 0,

17

where we have used the law of iterated expectation in the conditional form E[E[U |V,W]|V] =
E[U |V]. Moreover, let

Ai(X
i−1) = inf

x∈X
E[g(X i−1, x,Xn

i+1)− g(Xn)|X i−1]

Bi(X
i−1) = sup

x∈X
E[g(X i−1, x,Xn

i+1)− g(Xn)|X i−1],

where we have used the fact that theXi’s are independent, and whereXn
i+1 := (Xi+1, . . . , Xn).

Then evidently Ai(X
−1) ≤ Vi ≤ Bi(X

i−1), and

Bi(X
i−1)− Ai(X i−1) = sup

x∈X
sup
x′∈X

E[g(X i−1, x,Xn
i+1)− g(X i−1, x′, Xn

i+1)|X i−1]

= sup
x∈X

sup
x′∈X

(∫ [
g(X i−1, x, xni+1)− g(X i−1, x′, xni+1)

]
P (dxni+1)

)

≤
∫

sup
x∈X

sup
x′∈X′

∣∣g(X i−1, x, xni+1)− g(X i−1, x′, xni+1)
∣∣P (dxni+1)

≤ ci,

where the last step follows from the bounded difference property of g. �

2.4. McDiarmid’s inequality in action

McDiarmid’s inequality is an extremely powerful and often used tool in statistical learning
theory. We will now discuss several examples of its use. To that end, we will first introduce
some notation and definitions.

Let X be some (measurable) space. If Q is a probability distribution of an X-valued
random variable X, then we can compute the expectation of any (measurable) function
f : X→ R w.r.t. Q. So far, we have denoted this expectation by Ef(X) or by EQf(X). We
will often find it convenient to use an alternative notation, Q(f).

Let Xn = (X1, . . . , Xn) be n independent identically distributed (i.i.d.) X-valued random
variables with common distribution P . The main object of interest to us is the empirical
distribution induced by Xn, which we will denote by Pn. The empirical distribution assigns
the probability 1/n to each Xi, i.e.,

Pn =
1

n

n∑

i=1

δXi .

Here, δx denotes a unit mass concentrated at a point x ∈ X, i.e., the probability distribution
on X that assigns each event A the probability

δx(A) = 1{x∈A}, ∀ measurable A ⊆ X.

We note the following important facts about Pn:

(1) Being a function of the sample Xn, Pn is a random variable taking values in the
space of probability distributions over X.

(2) The probability of a set A ⊆ X under Pn,

Pn(A) =
1

n

n∑

i=1

1{Xi∈A},

18

is the empirical frequency of the set A on the sample Xn. The expectation of Pn(A)
is equal to P (A), the P -probability of A. Indeed,

EPn(A) = E

[
1

n

n∑

i=1

1{Xi∈A}

]
=

1

n

n∑

i=1

E[1{Xi∈A}] =
1

n

n∑

i=1

P(Xi ∈ A) = P (A).

(Think back to our coin-tossing example – this is a generalization of that idea, where
we approximate actual probabilities of events by their relative frequencies in a series
of independent trials.)

(3) Given a function f : X→ R, we can compute its expectation w.r.t. Pn:

Pn(f) =
1

n

n∑

i=1

f(Xi),

which is just the sample mean of f on Xn. It is also referred to as the empirical
expectation of f on Xn. We have

EPn(f) = E

[
1

n

n∑

i=1

f(Xi)

]
=

1

n

n∑

i=1

Ef(Xi) = Ef(X) = P (f).

We can now proceed to our examples.

2.4.1. Sums of bounded random variables. In the special case when X = R, P is a
probability distribution supported on a finite interval, and g(Xn) is the sum

g(Xn) =
n∑

i=1

Xi,

McDiarmid’s inequality simply reduces to Hoeffding’s. Indeed, for any xn ∈ [a, b]n and
x′i ∈ [a, b] we have

g(xi−1, xi, x
n
i+1)− g(xi−1, x′i, x

n
i+1) = xi − x′i ≤ b− a.

Interchanging the roles of x′i and xi, we get

g(xi−1, x′i, x
n
i+1)− g(xi−1, xi, x

n
i+1) = x′i − xi ≤ b− a.

Hence, we may apply Theorem 2.3 with ci = b− a for all i to get

P (|g(Xn)− Eg(Xn)| ≥ t) ≤ 2 exp

(
− 2t2

n(b− a)2

)
.

2.4.2. Uniform deviations. Let X1, . . . , Xn be n i.i.d. X-valued random variables with
common distribution P . By the Law of Large Numbers, for any A ⊆ X and any ε > 0

lim
n→∞

P (|Pn(A)− P (A)| ≥ ε) = 0.

In fact, we can use Hoeffding’s inequality to show that

P (|Pn(A)− P (A)| ≥ ε) ≤ 2e−2nε2 .

This probability bound holds for each A separately. However, in learning theory we are often
interested in the deviation of empirical frequencies from true probabilities simultaneously

19

over some collection of subsets of X. To that end, let A be such a collection and consider
the function

g(Xn) := sup
A∈A
|Pn(A)− P (A)| .(2.28)

Later in the course we will see that, for certain choices of A, Eg(Xn) = O(1/
√
n). However,

regardless of what A is, it is easy to see that, by changing only one Xi, the value of g(Xn)
can change at most by 1/n. Let xn = (x1, . . . , xn), choose some other x′i ∈ X, and let xn(i)
denote xn with xi replaced by x′i:

xn = (xi−1, xi, x
n
i+1), xn(i) = (xi−1, x′i, x

n
i+1).

Then

g(xn)− g(xn(i)) = sup
A∈A

∣∣∣Pxn(A)− P (A)
∣∣∣− sup

A′∈A

∣∣∣Pxn
(i)

(A′)− P (A′)
∣∣∣

= sup
A∈A

inf
A′∈A′

{∣∣∣Pxn(A)− P (A)
∣∣∣−
∣∣∣Pxn

(i)
(A′)− P (A′)

∣∣∣
}

≤ sup
A∈A

{∣∣∣Pxn(A)− P (A)
∣∣∣−
∣∣∣Pxn

(i)
(A)− P (A)

∣∣∣
}

≤ sup
A∈A

∣∣∣Pxn(A)− Pxn
(i)

(A)
∣∣∣

=
1

n
sup
A∈A

∣∣1{xi∈A} − 1{x′i∈A}
∣∣

≤ 1

n
.

Interchanging the roles of xn and xn(i), we obtain

g(xn(i))− g(xn) ≤ 1

n
.

Thus,
∣∣g(xn)− g(xn(i))

∣∣ ≤ 1

n
.

Note that this bound holds for all i and all choices of xn and xn(i). This means that the function

g defined in (2.28) has bounded differences with c1 = . . . = cn = 1/n. Consequently, we can
use Theorem 2.3 to get

P (|g(Xn)− Eg(Xn)| ≥ ε) ≤ 2e−2nε2 .

This shows that the uniform deviation g(Xn) concentrates sharply around its mean Eg(Xn).

2.4.3. Uniform deviations continued. The same idea applies to arbitrary real-valued
functions over X. Let Xn = (X1, . . . , Xn) be as in the previous example. Given any function
f : X→ [0, 1], Hoeffding’s inequality tells us that

P (|Pn(f)− Ef(X)| ≥ ε) ≤ 2e−2nε2 .

However, just as in the previous example, in learning theory we are primarily interested in
controlling the deviations of empirical means from true means simultaneously over whole

20

classes of functions. To that end, let F be such a class consisting of functions f : X→ [0, 1]
and consider the uniform deviation

g(Xn) := sup
f∈F
|Pn(f)− P (f)| .

An argument entirely similar to the one in the previous example1 shows that this g has
bounded differences with c1 = . . . = cn = 1/n. Therefore, applying McDiarmid’s inequality,
we obtain

P (|g(Xn)− Eg(Xn)| ≥ ε) ≤ 2e−2nε2 .

We will see later that, for certain function classes F, we will have Eg(Xn) = O(1/
√
n).

2.4.4. Kernel density estimation. For our final example, let Xn = (X1, . . . , Xn)
be an n-tuple of i.i.d. real-valued random variables whose common distribution P has a
probability density function (pdf) f , i.e.,

P (A) =

∫

A

f(x)dx

for any measurable set A ⊆ R. We wish to estimate f from the sample Xn. A popular
method is to use a kernel estimate (the book by Devroye and Lugosi [DL01] has plenty of
material on density estimation, including kernel methods, from the viewpoint of statistical
learning theory). To that end, we pick a nonnegative function K : R→ R that integrates to
one,

∫
K(x)dx = 1 (such a function is called a kernel), as well as a positive bandwidth (or

smoothing constant) h > 0 and form the estimate

f̂n(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
.

It is not hard to verify2 that f̂n is a valid pdf, i.e., that it is nonnegative and integrates to
one. A common way of quantifying the performance of a density estimator is to use the L1

distance to the true density f :

‖f̂n − f‖L1 =

∫

R

∣∣∣f̂n(x)− f(x)
∣∣∣ dx.

Note that ‖f̂n−f‖L1 is a random variable since it depends on the random sample Xn. Thus,
we can write it as a function g(Xn) of the sample Xn. Leaving aside the problem of actually
bounding Eg(Xn), we can easily establish a concentration bound for it using McDiarmid’s
inequality. To do that, we need to check that g has bounded differences. Choosing xn and

1Exercise: verify this!
2Another exercise!

21

xn(i) as before, we have

g(xn)− g(xn(i))

=

∫

R

∣∣∣∣∣
1

nh

i−1∑

j=1

K

(
x− xj
h

)
+

1

nh
K

(
x− xi
h

)
+

1

nh

n∑

j=i+1

K

(
x− xj
h

)
− f(x)

∣∣∣∣∣ dx

−
∫

R

∣∣∣∣∣
1

nh

i−1∑

j=1

K

(
x− xj
h

)
+

1

nh
K

(
x− x′i
h

)
+

1

nh

n∑

j=i+1

K

(
x− xj
h

)
− f(x)

∣∣∣∣∣ dx

≤ 1

nh

∫

R

∣∣∣∣K
(
x− xi
h

)
−K

(
x− x′i
h

)∣∣∣∣ dx

≤ 2

nh

∫

R
K
(x
h

)
dx

=
2

n
.

Thus, we see that g(Xn) has the bounded differences property with c1 = . . . = cn = 2/n, so
that

P (|g(Xn)− Eg(Xn)| ≥ ε) ≤ 2e−nε
2/2.

2.5. Subgaussian random variables

Often bounds proven for collections of Gaussian random variables can be readily extended
to collections of random variables with similar exponential bounds, defined as follows.

Definition 2.1. A random variable X is said to be subgaussian with scale parameter ν,

if X has a finite mean and E
[
es{X−E[X]}] ≤ e

s2ν2

2 for all s ∈ R.

Sometimes ν2 is called the proxy variance because a Gaussian random variable with variance
σ2 is subgaussian for ν2 = σ2. Also, if X is subgaussian with scale parameter ν, then the
variance of X, σ2, satisfies σ2 ≤ ν2.

The definition of subgaussian random variable meshes very well with Hoeffding’s bounds.
Hoeffding’s lemma, Lemma 2.1, can be restated as follows. If U is a random variable such
that for some parameters a, b, P {U ∈ [a, b]} = 1, U is subgaussian with scale parameter
ν = b−a

2
. If Sn = X1 + · · · + Xn, where X1, . . . , Xn are independent random variables, such

that Xi is subgaussian with scale parameter νi, then Sn is subgaussian with proxy variance
given by ν2 = ν2

1 + · · ·+ ν2
n. The methodology used to derive the Chernoff inequality shows

that if X is subgaussian with scale parameter ν, then

P {X − E [X] ≥ νt} ≤ e−
t2

2(2.29)

for all t ≥ 0. The bound (2.29) together with the equation ν2 = ν2
1 + · · · + ν2

n discussed
above for sums of indepedent subgaussian random variables, is essentially a restatement of
Hoeffding’s inequality, Theorem 2.1.

The following lemma addresses the distribution of the maximum of a collection of sub-
gaussian random variables.

22

Lemma 2.3 (Maximal lemma for subgaussian random variables). Suppose X1, . . . , Xn are
mean zero, and each is subgaussian with scale parameter ν. (The variables are not assumed
to be independent.) Then

E
[
max
i
Xi

]
≤ ν

√
2 log n(2.30)

P
{

max
i
Xi ≥ ν(

√
2 log n+ t)

}
≤ e−t

√
2 logn− t

2

2 for t ≥ 0(2.31)

Proof. Starting with Jensen’s inequality, for any s ≥ 0,

esE[maxiXi] ≤ E
[
esmaxiXi

]
= E

[
max
i

esXi
]

≤ E

[∑

i

esXi

]
=
∑

i

E
[
esXi

]
≤ nes

2ν2/2.

Taking the logarithm of each side yields E [maxiXi] ≤ logn
s

+ sν2/2. Letting s =
√

2 logn
ν

yields (2.30).
Note that {maxiXi ≥ c} = ∪i{Xi ≥ c} so by the union bound, P {maxiXi ≥ c} ≤∑
i P {Xi ≥ c} . By the assumptions and the bound (2.29), P

{
Xi ≥ ν(

√
2 log n+ t)

}
≤

exp(−(
√

2 log n+ t)2/2) for each i. Assembling with c = ν(
√

2 log n+ t) yields

P
{

max
i
Xi ≥ ν(

√
2 log n+ t)

}
≤ n exp(−(

√
2 log n+ t)2/2) = e−t

√
2 logn− t

2

2 ,

and (2.31) is proved. �

23

CHAPTER 3

Minima, convexity, strong convexity, and smoothness of functions

3.1. The minima of a function

Suppose f is a real-valued function with domain S. A point x∗ ∈ S is a minimizer
of f if f(x∗) ≤ f(x) for all x ∈ S. The set of all minimizers of f over S is denoted by
arg minx∈S f(x). It is possible there are no minimizers, but f must have an infimum, where
the infimum of f is the maximum value V ∈ R ∪ {−∞} such that f(x) ≥ V for all x ∈
S. The infimum of f is denoted by infy∈S f(y). The set of minimizers of f is denoted by
arg minx∈S f(x) = {x ∈ S : f(x) = infy∈S f(y)}. Maximizers of f are similarly related to the
supremum of f , which satisfies supy∈S f(y) = − infy∈S −f(y).

Theorem 3.1. (Weierstrass extreme value theorem) Suppose f : S → R is a continuous
function and the domain S is a sequentially compact set. (For example, S could be a closed,
bounded subset of Rm for some m.) Then there exists a minimizer of f . In other words,
arg minx∈S f(x) 6= ∅.

Proof. Let V = infx∈S f(x). Note that V ≥ −∞. Let (xn) denote a sequence of points
in S such that limn→∞ f(xn) = V. By the compactness of S, there is a subsequence (xnk) of
the points that is convergent to some point x∗ ∈ S. In other words, limk→∞ xnk = x∗. By
the continuity of f , f(x∗) = limk→∞ f(xnk), and also the subsequence of values has the same
limit as the entire sequence of values, so limk→∞ f(xnk) = V. Thus, f(x∗) = V, which implies
the conclusion of the theorem. �

Example 3.1. (a) If S = [0, 1) or S = R and f(x) = 1
1+x2

, there is no minimizer.
Theorem 3.1 doesn’t apply because S is not compact. (b) If S = [0, 1] and f(x) = 1 for
0 ≤ x ≤ 0.5 and f(x) = x for 0.5 < x ≤ 1 then there is no minimizer. Theorem 3.1 doesn’t
apply because f is not continuous.

3.2. Derivatives of functions of several variables

Suppose f : Rn → Rm. We say that f is differentiable at a point x if f is well enough
approximated in a neighborhood of x by a linear approximation. Specifically, an m × n
matrix J(x) is the Jacobian of f at x if

lim
a→x

‖f(a)− f(x)− J(x)(a− x)‖
‖a− x‖ = 0

24

The Jacobian is also denoted by ∂f
∂x

and if f is differentiable at x the Jacobian is given by a
matrix of partial derivatives:

∂f

∂x
= J =

∂f1
∂x1

. . . ∂f1
∂xn

...
...

...
∂fm
∂x1

. . . ∂fm
∂xn

 .

Moreover, according to the multidimensional differentiability theorem, a sufficient condition
for f to be differentiable at x is for the partial derivatives ∂fi

∂xj
to exist and be continuous in a

neighborhood of x. In the special case m = 1 the gradient is the transpose of the derivative:

∇f =

∂f
∂x1
...
∂f
∂xn

 .

A function f : Rn → R is twice differentiable at x if there is an n×n matrix H(x), called
the Hessian matrix, such that

lim
a→x

‖f(a)− f(x)− J(x) · (a− x)− 1
2
(a− x)TH(x)(a− x)‖

‖a− x‖2
= 0.

The matrix H(x) is also denoted by ∂2f
(∂x)2

(x), and is given by a matrix of second order partial

derivatives:

∂2f

(∂x)2
= H =

∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn

...
...

...
∂2f

∂xn∂x1
. . . ∂2f

∂xn∂xn

 .

The function f is twice differentiable at x if both the first partial derivatives ∂f
∂xi

and second

order partial derivatives ∂2f
∂xi∂xj

exist and are continuous in a neighborhood of x.

If f : Rn → R is twice continuously differentiable and if x, α ∈ Rn, then we can find the
first and second derivatives of the function t 7→ f(x+ αt) from R→ R :

∂f(x+ αt)

∂t
=
∑

i

∂f

∂xi

∣∣∣∣
x+αt

αi = αT∇f(x+ αt).

∂2f(x+ αt)

(∂t)2
=
∑

i

∑

j

∂2f

∂xi∂xj

∣∣∣∣
x+αt

αiαj

= αTH(x+ αt)α.

If H(y) is positive semidefinite for all y, in other words αTH(y)α ≥ 0 for all α ∈ Rn and all
y, then f is a convex function.

3.3. Convex sets and convex functions

Let H be a Hilbert space (defined in Section 4.1). For example, H could be Euclidean
space Rd for some d ≥ 1. A subset F ⊆ H is convex if

f1, f2 ∈ F =⇒ λf1 + (1− λ)f2 ∈ F, ∀λ ∈ [0, 1].

25

A function ϕ : F → R is convex if

ϕ(λf1 + (1− λ)f2) ≤ λϕ(f1) + (1− λ)ϕ(f2), ∀f1, f2 ∈ F, λ ∈ [0, 1].

An element g ∈ H is a subgradient of a convex function ϕ at f ∈ F if

ϕ(f ′) ≥ ϕ(f) + 〈g, f ′ − f〉, ∀f ′ ∈ F.

The set of all subgradients of ϕ at f is denoted by ∂ϕ(f) and is referred to as the subdiffer-
ential of ϕ at f . We say that ϕ is subdifferentiable at f if ∂ϕ(f) 6= ∅. In particular, it can
be shown that ∂ϕ(f) 6= ∅ for every f in the interior of F. We say that ϕ is differentiable at
f if ∂ϕ(f) has only one element, in which case we refer to this element as the gradient of ϕ
at f and denote it by ∇ϕ(f).

Given a convex function ϕ on F, it is often of interest to find a minimizer of ϕ on F. We
have the following basic result:

Lemma 3.1 (First-order optimality condition). Let ϕ : F → R be a differentiable convex
function. The point f ∗ ∈ F is a minimizer of ϕ on F if and only if

〈∇ϕ(f ∗), f − f ∗〉 ≥ 0, ∀f ∈ F.(3.1)

Proof. To prove sufficiency, note that, by definition of the subgradient,

ϕ(f) ≥ ϕ(f ∗) + 〈g∗, f − f ∗〉
for any g∗ ∈ ∂ϕ(f ∗). If (3.1) holds, then ϕ(f) ≥ ϕ(f ∗) for all f ∈ F. (Note that here we do
not require differentiability of ϕ.)

To prove necessity, let f ∗ be a minimizer of ϕ on F, and suppose that (3.1) does not
hold. That is, there exists some f ∈ F, such that 〈∇ϕ(f ∗), f − f ∗〉 < 0. By convexity
of F, f ∗ + t(f − f ∗) ∈ F for all sufficiently small t > 0. Consider the function F (t) :=
ϕ(f ∗ + t(f − f ∗)). Since ϕ is differentiable, so is F . By the chain rule, which holds in a
Hilbert space, we have

F ′(0) = 〈∇ϕ(f ∗ + t(f − f ∗)), f − f ∗〉
∣∣∣
t=0

= 〈∇ϕ(f ∗), f − f ∗〉 < 0.

But this means F (t) < F (0) for all small t > 0, which contradicts the optimality of f ∗. �

3.4. Strongly convex functions

Definition 3.1. A function ϕ : F → R is m-strongly convex for some m > 0 if ϕ is
convex, subdifferentiable, and

ϕ(f ′) ≥ ϕ(f) + 〈g, f ′ − f〉+
m

2
‖f − f ′‖2(3.2)

for all f, f ′ ∈ F and all g ∈ ∂ϕ(f).

It is not hard to see that ϕ is m-strongly convex if and only if the function ϕ(f)− m
2
‖f‖2 is

convex.

Lemma 3.2. Suppose F is a nonempty, closed, convex subset of a Hilbert space H, and
ϕ : F → R is m-strongly convex for some m > 0. Then the following hold:

(1) For any f, f ′ ∈ F and 0 ≤ λ ≤ 1,

ϕ(λf + (1− λ)f ′)) ≤ λϕ(f) + (1− λ)ϕ(f ′)− λ(1− λ)m

2
‖f − f ′‖2(3.3)

26

(2) There exists a unique f ∗ ∈ F that minimizes ϕ. (Hence we write f ∗ = arg minf∈F ϕ(f).)
(3) For any f ∈ F, ϕ(f)− ϕ(f ∗) ≥ m

2
‖f − f ∗‖2, where f ∗ = arg minf∈F ϕ(f).

(4) (Stability of minimizers under Lipschitz perturbations) Suppose B is an L-Lipschitz
function on F, i.e.,

|B(f)−B(f ′)| ≤ L‖f − f ′‖, ∀f, f ′ ∈ F

and suppose f̃ ∗ is a minimizer of ϕ+B over F. Then ‖f ∗ − f̃ ∗‖ ≤ L
m
.

(5) For any f ∈ F, ϕ(f)− ϕ(f ∗) ≤ 1
2m
‖∇ϕ(f)‖2.

(6) For any f, f ′ ∈ F,

〈∇ϕ(f)−∇ϕ(f ′), f − f ′〉 ≥ m‖f − f ′‖2.(3.4)

Proof. For part 1, let g be any choice of subgradient in ∂ϕ(λf + (1 − λ)f ′). By the
definition of strong convexity,

ϕ(f) ≥ ϕ(λf + (1− λ)f ′) + (1− λ)〈g, f − f ′〉+
(1− λ)2m

2
‖f − f ′‖2(3.5)

ϕ(f ′) ≥ ϕ(λf + (1− λ)f ′) − λ〈g, f − f ′〉 +
λ2m

2
‖f − f ′‖2(3.6)

Multiply both sides of (3.5) by λ and both sides of (3.6) by 1−λ and then add the equations
together to obtain (3.3). Parts 2 and 4 are proved in homework. For Part 3, note that the
0 element of H is a subgradient of ϕ at f ∗, so Part 3 follows from (3.2) with f = f ∗ and
g = 0. For Part 5, the definition (3.2) yields for any f,

ϕ(f ∗)− ϕ(f) ≥ 〈∇ϕ(f), f ∗ − f〉+
m

2
‖f − f ∗‖2

≥ min
g

{
〈∇ϕ(f), g〉+

m

2
‖g‖2

}

= − 1

2m
‖∇ϕ(f)‖2.

For Part 6, we have

ϕ(f ′) ≥ ϕ(f) + 〈∇ϕ(f), f ′ − f〉+
m

2
‖f − f ′‖2

ϕ(f) ≥ ϕ(f ′) + 〈∇ϕ(f ′), f − f ′〉+
m

2
‖f − f ′‖2.

Adding these two inequalities and rearranging, we get (3.4). �

Example 3.2. Let ϕ(f) = mf2

2
and ϕ̃(f) = mf2

2
− Lf for f ∈ R. Then |f ∗ − f̃ ∗| =∣∣0− L

m

∣∣ = L
m
. In this case, the bound in (3.2) part 4 holds with equality.

3.5. Smooth convex functions

Let F denote a Hilbert space. We say that a differentiable (not necessarily convex)
function ϕ : F → R is M-smooth, for some M ≥ 0, if the gradient mapping f 7→ ∇ϕ(f) is
M -Lipschitz:

‖∇ϕ(f)−∇ϕ(f ′)‖ ≤M‖f − f ′‖, ∀f, f ′ ∈ F.(3.7)

We give some properties of smooth convex functions. Smoothness of a convex function
is very helpful in case a gradient descent algorithm is used to minimize the function.

27

Lemma 3.3. (Smooth functions in finite dimensions) Suppose F is a d-dimensional Eu-
clidean space, and ϕ is twice continuously differentiable. (By convexity, the Hessian satisfies,
∇2φ(f) � 0 for all f, where A � B for symmetric matrices A and B means A−B is positive
semidefinite.) If ϕ is convex, then ϕ is M-smooth if ∇2φ(f) �MI for all f.

Proof. Note that ∇ϕ(f ′)−∇ϕ(f) =
∫ 1

0
d
dt

(∇ϕ(ft)) dt where ft = (1− t)f+ tf ′. Taking
the elements of F to be column vectors, the definition of gradient and the chain rule imply:

d

dt
(∇ϕ(ft))i =

d

dt

(
∂ϕ

∂fi
(ft)

)
=
∑

j

∂2ϕ(ft)

∂fi∂fj
(f ′j − fj)

Thus,

∇ϕ(f ′)−∇ϕ(f) =

∫ 1

0

(
∇2ϕ(ft)

)
(f ′ − f)dt = H(f ′ − f)

where H is the d × d matrix H =
∫ 1

0
∇2ϕ(ft)dt. Since ∇2ϕ(ft) � MI for each t it follows

readily that H � MI. So the spectral (i.e. operator) norm of H satisfies ‖H‖ ≤ M. Hence
‖∇ϕ(f ′)−∇ϕ(f)‖ = ‖H(f ′ − f)‖ ≤ ‖H‖‖f − f ′‖ ≤M‖f − f ′‖. So ϕ is M -smooth. �

Lemma 3.4. Suppose ϕ is an M-smooth convex function, and given α > 0 define the
gradient descent iteration map Gϕ,α by Gϕ,α(f) = f − α∇ϕ(f). Then the following hold.

(a) For any f, f ′ ∈ F, ϕ(f ′)− ϕ(f) ≤ 〈∇ϕ(f), f ′ − f〉+ M
2
‖f ′ − f‖2.

(b) For any α > 0 and f ∈ F,

ϕ(Gϕ,α(f)) ≤ ϕ(f)− α
(

1− αM

2

)
‖∇ϕ(f)‖2.

In particular,

ϕ(Gϕ,α(f)) ≤ ϕ(f) if 0 ≤ α ≤ 2
M

ϕ(Gϕ, 1
M

(f)) ≤ ϕ(f)− 1
2M
‖∇ϕ(f)‖2 (special case α = 1

M
)

ϕ(f ∗) ≤ ϕ(f)− 1
2M
‖∇ϕ(f)‖2 if f ∗ is a global minimizer of ϕ.

(c) ϕ(f ′)− ϕ(f) ≥ 〈∇ϕ(f), f ′ − f〉+ 1
2M
‖∇ϕ(f ′)−∇ϕ(f)‖2 for any f, f ′ ∈ F.

(d) (Co-coercive property of the gradient of an M-smooth convex function):

〈∇ϕ(f ′)−∇ϕ(f), f ′ − f〉 ≥ 1

M
‖∇ϕ(f ′)−∇ϕ(f)‖2.

(e) (Contraction property of gradient descent map) If 0 ≤ α < 2/M, then

‖Gϕ,α(f)−Gϕ,α(f ′)‖ ≤ ‖f − f ′‖ ∀f, f ′ ∈ F.

(f) (Strict contraction property of gradient descent map) (As all results in this chapter,
this result is classical [Pol87].) If 0 ≤ α < 2/M and ϕ is also m-strongly convex
for some m > 0, then

‖Gϕ,α(f)−Gϕ,α(f ′)‖ ≤ η‖f − f ′‖ ∀f, f ′ ∈ F,

where η2 = 1 − αm(2 − αM) < 1. In particular, if f ∗ is the minimizer of ϕ,
‖Gϕ,α(f)−f ∗‖ ≤ η‖f−f ∗‖ for all f ∈ F. Also, if 0 < α ≤ 1

M
, then η ≤

√
1− αm ≤

1− αm
2
.)

28

Proof. (a) Note that ϕ(f ′)− ϕ(f) =
∫ 1

0
dϕ(ft)
dt

dt, where ft = (1− t)f + tf ′, and by the

chain rule, dϕ(ft)
dt

= 〈∇ϕ(ft), f
′ − f〉. So

ϕ(f ′)− ϕ(f)− 〈∇ϕ(f), f ′ − f〉 =

∫ 1

0

〈∇ϕ(ft)−∇ϕ(f), f ′ − f〉dt

≤
∫ 1

0

‖∇ϕ(ft)−∇ϕ(f)‖‖f ′ − f‖dt

≤
∫ 1

0

M‖ft − f‖‖f ′ − f‖dt

=

∫ 1

0

Mt‖f ′ − f‖2dt =
M

2
‖f ′ − f‖2

(b) Follows from (a) by letting f ′ = Gϕ,α(f) and using f ′ − f = −α∇ϕ(f).
(c) Fix f, f ′ ∈ F. For any g, the inequality holds for a function ϕ if and only if it holds

for ϕ̃(f) , ϕ(f)−〈g, f〉, because the contributions due to g are the same on each side of the
inequality. And ϕ̃ is also M -smooth. Letting g = ∇ϕ(f) makes ∇ϕ̃(f) = 0, so that f is a
global minimizer of ϕ̃. The inequality for ϕ̃ is true because it reduces to the last inequality
of part (b).

(d) By part (c), for any f, f ′ ∈ F,

ϕ(f ′)− ϕ(f) ≥ 〈∇ϕ(f), f ′ − f〉+
1

2M
‖∇ϕ(f ′)−∇ϕ(f)‖2

ϕ(f)− ϕ(f ′) ≥ 〈∇ϕ(f ′), f − f ′〉+
1

2M
‖∇ϕ(f ′)−∇ϕ(f)‖2

Adding the respective sides of these equations and rearranging yields the desired inequality.
(e-f) We can prove (e) and (f) together, because taking m = 0 in (f) corresponds to (e).

Observe that

‖Gϕ,α(f)−Gϕ,α(f ′)‖2 = ‖f − f ′ − α (∇ϕ(f)−∇ϕ(f ′)) ‖2
= ‖f − f ′‖2 − 2α〈f − f ′,∇ϕ(f)−∇ϕ(f ′)〉+ α2‖∇ϕ(f)−∇ϕ(f ′)‖2

(a)

≤ ‖f − f ′‖2 − α(2− αM)〈∇ϕ(f)−∇ϕ(f ′), f − f ′〉
(b)

≤ η2‖f − f ′‖2,

where (a) follows from the co-coercive property of Lemma 3.4(d) and (b) follows from Lemma
3.2(6), which holds in the special case m = 0 by the convexity of ϕ. �

Remark 3.1. The properties of strong convexity and smoothness of convex functions
are strongly related. Roughly speaking, the first gives a lower bound on the curvature of a
function and the second an upper bound. Moreover, the properties are dual properties for
the Legendre-Fenchel transform. If ϕ is a closed (means sets of the form ϕ ≤ t are closed),
convex function and ϕ∗(y) = supx∈X〈x, y〉 − ϕ(x), then ϕ is m-strongly convex if and only if
ϕ∗ is 1/m-smooth.

29

CHAPTER 4

Function spaces determined by kernels

A powerful way of building complicated classifiers is to use linear combinations of simple
functions. The number of simple functions used is potentially infinite, so it is natural to
consider an infinite dimensional generalization of ordinary finite dimensional Euclidean space,
known as a Hilbert space. Some particular Hilbert spaces of functions are naturally specified
in terms of a kernel. Kernel methods are popular in machine learning for a variety of reasons,
not the least of which is that any algorithm that operates in a Euclidean space and relies
only on the computation of inner products between feature vectors can be modified to work
with any suitably well-behaved kernel. (See the representer theorem in Section 8.6.)

4.1. The basics of Hilbert spaces

Hilbert spaces are generalizations of the usual finite-dimensional Euclidean spaces. While
Hilbert spaces can be infinite dimensional, they retain many of the important key properties
of finite-dimensional Euclidean space. As long as an inner product is defined for pairs of
elements in the space, a notion of angle and, consequently, orthogonality, can be defined
for two elements in the space. Moreover, a Hilbert space has certain favorable convergence
properties, yielding (unique) linear projections of their elements onto closed linear subspaces,
or, more generally, unique nonlinear projections onto closed convex sets.

Definition 4.1. A real vector space V is an inner product space if there exists a function
〈·, ·〉V : V × V→ R, which is:

(1) Symmetric: 〈v, v′〉V = 〈v′, v〉V for all v, v′ ∈ V
(2) Bilinear: 〈αv1 + βv2, v

′〉V = α〈v1, v
′〉V + β〈v2, v

′〉V for α, β ∈ R and v1, v2, v
′ ∈ V

(3) Positive definite: 〈v, v〉V ≥ 0 for all v ∈ V, and 〈v, v〉V = 0 if and only if v = 0

Let (V, 〈·, ·〉V) be an inner product space. Then we can define a norm on V via

‖v‖V :=
√
〈v, v〉V.

It is easy to check that this is, indeed, a norm —

(1) It is homogeneous: for any v ∈ V and any α ∈ R,

‖αv‖V =
√
〈αv, αv〉V =

√
α2〈v, v〉V = |α|

√
〈v, v〉V = |α| · ‖v‖V

(2) It satisfies the triangle inequality: for any v, v′ ∈ V,

‖v + v′‖V ≤ ‖v‖V + ‖v′‖V.(4.1)

To prove this, we first need to establish another key property of ‖ · ‖V: the Cauchy–
Schwarz inequality, which generalizes its classical Euclidean counterpart and says

30

that

|〈v, v′〉V| ≤ ‖v‖V‖v′‖V.(4.2)

To prove (4.2), start with the observation ‖v − λv′‖2
V = 〈v − λv′, v − λv′〉V ≥ 0 for

any λ ∈ R. Expanding this yields

〈v − λv′, v − λv′〉V = λ2‖v′‖2
V − 2λ〈v, v′〉V + ‖v‖2

V ≥ 0.

This is a quadratic function of λ, and the above implies that its graph does not
cross the horizontal axis. Therefore,

4|〈v, v′〉V|2 ≤ 4‖v‖2
V‖v′‖2

V ⇐⇒ |〈v, v′〉V| ≤ ‖v‖V‖v′‖V,
and the Cauchy-Schwarz inequality (4.2) is proved. Thus,

‖v + v′‖2
V ≡ 〈v + v′, v + v′〉V

= 〈v, v〉V + 〈v, v′〉V + 〈v′, v〉V + 〈v′, v′〉V
= ‖v‖2

V + 2〈v, v′〉V + ‖v′‖2
V

≤ ‖v‖2
V + 2‖v‖2

V‖v′‖2
V + ‖v′‖2

V = (‖v‖V + ‖v′‖V)
2

where we’ve used the definition of norm, the bilinear and symmetry properties of the
inner product, and the Cauchy–Schwarz inequality. Since all norms are nonnegative,
we can take square roots of both sides to get the triangle inequality.

(3) Finally, ‖v‖V ≥ 0, and ‖v‖V = 0 if and only if v = 0 – this is obvious from definitions.

Thus, an inner product space can be equipped with a norm that has certain special
properties (mainly, the Cauchy–Schwarz inequality, since a lot of useful things follow from
it alone). Now that we have a norm, we can talk about convergence of sequences in V:

Definition 4.2. A sequence of elements of V, {vn}∞n=1, converges to v ∈ V if

lim
n→∞

‖vn − v‖V = 0.(4.3)

Any norm-convergent sequence has the property that, as n gets larger, its elements get
closer and closer to one another. Specifically, suppose that {vn} converges to v. Then (4.3)
implies that for any ε > 0 we can choose N large enough, so that ‖vn − v‖V < ε/2 for all
n ≥ N . But the triangle inequality gives

‖vn − vm‖V ≤ ‖vn − v‖V + ‖vm − v‖V < ε, ∀ m,n ≥ N.

In other words,

lim
min(m,n)→∞

‖vn − vm‖ = 0.(4.4)

Any sequence {vn} that has the property (4.4) is called a Cauchy sequence. We have just
proved that any convergent sequence is Cauchy. However, the converse is not necessarily
true: a Cauchy sequence does not have to be convergent. This motivates the following
definition:

Definition 4.3. A normed space (V, ‖ · ‖V) is complete if any Cauchy sequence {vn}
of its elements is convergent. If the norm ‖ · ‖V is induced by an inner product and if it is
complete, then we say that V is a Hilbert space.

31

For an example of an inner product space that is not complete, consider the space of
sequences of the form x = (x1, x2, . . .) with xi ∈ R such that only finitely many of the xi’s
are nonzero, with the inner product 〈x, y〉 =

∑∞
i=1 xiyi. There is a standard procedure of

starting with an inner product and the corresponding normed space and then completing
it by adding the limits of all Cauchy sequences. We will not worry too much about this
procedure. Here are a few standard examples of Hilbert spaces:

(1) The Euclidean space V = Rd with the usual inner product

〈v, v′〉 =
d∑

j=1

vjv
′
j.

The corresponding norm is the familiar `2 norm, ‖v‖ =
√
〈v, v〉.

(2) More generally, if A is a positive definite d× d matrix, then the inner product

〈v, v′〉A := 〈v, Av′〉

induces the A-weighted norm ‖v‖A :=
√
〈v, v〉A =

√
〈v, Av〉, which makes Rd into

a Hilbert space. The preceding example is a special case with A = Id, the d × d
identity matrix.

(3) The space L2(Rd) of all square-integrable functions f : Rd → R, i.e.,
∫

Rd
f 2(x)dx <∞,

is a Hilbert space with the inner product

〈f, g〉L2(Rd) :=

∫

Rd
f(x)g(x)dx

and the corresponding norm

‖f‖L2(Rd) :=

√∫

Rd
f 2(x)dx.

(4) Let (Ω,B, P) be a probability space. Then the space L2(P) of all real-valued random
variables X : Ω→ R with finite second moment, i.e.,

EX2 =

∫

Ω

X2(ω)P (dω) < +∞,

is a Hilbert space with the inner product

〈X,X ′〉L2(P) := E[XX ′] =

∫

Ω

X(ω)X ′(ω)P (dω)

and the corresponding norm

‖X‖L2(P) :=

√∫

Ω

|X(ω)|2P (dω) ≡
√

EX2.

32

From now on, we will denote a typical Hilbert space by (H, 〈·, ·〉H); the induced norm will
be denoted by ‖ · ‖H.

An enormous advantage of working with Hilbert spaces is the availability of the notion
of orthogonality and orthogonal projection. Two elements h, g of a Hilbert space H are said
to be orthogonal if 〈h, g〉H = 0.

A subset H1 of H is defined to be closed if the limit of any convergent sequence {hn} of
elements of H1 is also contained in H1. A subset H1 of H is a linear subspace if v1 +v2 ∈ H1

whenever v1, v2 ∈ H1. We have the following basic facts:

Proposition 4.1 (Projection onto a subspace of a Hilbert space). Let H1 be a closed
linear subspace of a Hilbert space H. For any g ∈ H there is a unique solution of the
optimization problem

minimize ‖h− g‖ subject to h ∈ H1.

The solution is denoted by Πg and is called the projection of g onto H1. We can write
Πg = arg minh∈H1

‖h− g‖. The projection mapping Π has the following properties:

(1) It is a linear operator: Π(ag + bg′) = aΠg + bΠg′ for a, b ∈ R, g, g′ ∈ H.
(2) Π2 = Π, i.e., Π(Πg) = Πg for any g ∈ H.
(3) If g ∈ H1, then Πg = g.
(4) For any g ∈ H and any h ∈ H1, 〈Πg, h〉H = 〈g, h〉H.

Let H⊥1 be the set of all h⊥ ∈ H, such that 〈g, h⊥〉H = 0 for all g ∈ H1. Then:

(1) H⊥1 is also a closed linear subspace of H.
(2) Any element g of H can be uniquely decomposed as g = h+ h⊥, where h ∈ H1 and

h⊥ ∈ H⊥1 . Furthermore, h = Π(g).

Remark 4.1. It is important for H1 to be a closed linear subspace of H for the above
results to hold.

Proposition 4.2 (Projections onto a closed convex subset of a Hilbert space). Let F be
a nonempty, closed, convex subset of H. Define the projection operator Π : H→ F as

Π(g) := arg min
f∈F

‖f − g‖2.(4.5)

Then:

(a) For any g, Π(g) exists and is unique.
(b) The projection operator is nonexpansive, i.e., for any g, g′ ∈ H,

‖Π(g)− Π(g′)‖ ≤ ‖g − g′‖.(4.6)

Proof. (a) The function ϕ(f) := 1
2
‖f − g‖2 is strongly convex. Hence, by Lemma 3.2,

it has a unique minimizer in F.
(b) Note that ∇ϕ(f) = f − g. By the first-order optimality condition, for any f ′ ∈ F,

〈∇ϕ(Π(g)), f ′ − Π(g)〉 = 〈Π(g)− g, f ′ − Π(g)〉 ≥ 0.(4.7)

In particular, using this with f ′ = Π(g′), we get

〈Π(g)− g,Π(g)− Π(g′)〉 ≤ 0.(4.8)

Similarly,

〈g′ − Π(g′),Π(g)− Π(g′)〉 ≤ 0.(4.9)

33

Adding the inequalities (4.8) and (4.9) and rearranging, we obtain

‖Π(g)− Π(g′)‖2 ≤ 〈g − g′,Π(g)− Π(g′)〉.(4.10)

Applying Cauchy–Schwarz to the right-hand side and canceling the factor of ‖Π(g)−Π(g′)‖
from both sides gives (4.6). �

4.2. Reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space (RKHS) is a family of functions on some set X that
forms a Hilbert space, with an associated kernel, as we describe later. Often in practice, the
norm of a function is an appropriate measure of the complexity of the function. Such classes
of functions are well suited to statistical learning theory because it makes sense to adjust
the complexity of the predictors/classifiers based on the availability of the data. To start
with, let us define what we mean by a kernel. We will stick to Euclidean feature spaces X,
although everything works out if X is an arbitrary separable metric space.

Definition 4.4. Let X be a closed subset of Rd. A real-valued function K : X× X→ R
is called a Mercer kernel provided the following conditions are met:

(1) It is symmetric, i.e., K(x, x′) = K(x′, x) for any x, x′ ∈ X.
(2) It is continuous, i.e., if {xn} is a sequence of points in X converging to a point x,

then

lim
n→∞

K(xn, x
′) = K(x, x′), ∀x′ ∈ X.

(3) It is positive semidefinite, i.e., for all α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X,

n∑

i,j=1

αiαjK(xi, xj) ≥ 0.(4.11)

Remark 4.2. Another way to interpret the positive semidefiniteness condition is as
follows. For any n-tuple xn = (x1, . . . , xn) ∈ Xn, define the n× n kernel Gram matrix

GK(xn) := [K(xi, xj)]
n
i,j=1 .

Then (4.11) is equivalent to saying that GK(xn) is positive semidefinite in the usual sense,
i.e., for any vector v ∈ Rn we have

〈v,GK(xn)v〉 ≥ 0.

Remark 4.3. From now on, we will just say “kernel,” but always mean “Mercer kernel.”

Here are some examples of kernels. Additional examples are provided in the next section.

(1) With X = Rd, K(x, x′) = 〈x, x′〉, the usual Euclidean inner product.
(2) A more general class of kernels based on the Euclidean inner product can be con-

structed as follows. Let X = {x ∈ Rd : ‖x‖ ≤ R}; choose any sequence {aj}∞j=0 of
nonnegative reals such that

∞∑

j=0

ajR
2j <∞.

34

Then

K(x, x′) =
∞∑

j=0

aj〈x, x′〉j

is a kernel.
(3) Let X = Rd, and let k : Rd → R be a continuous function, which is reflection-

symmetric, i.e., k(−x) = k(x) for all x. Then K(x, x′) := k(x − x′) is a kernel
provided the Fourier transform of k,

k̂(ξ) :=

∫

Rd
e−i〈ξ,x〉k(x)dx,

is nonnegative. A prime example is the Gaussian kernel, induced by the function
k(x) = e−γ‖x‖

2
.

In all of the above cases, the first two properties of a Mercer kernel are easy to check. The
third, i.e., positive semidefiniteness, requires a bit more work. For details, consult Section 2.5
of the book by Cucker and Zhou [CZ07].

Suppose we have a fixed kernel K on our feature space X (which we assume to be a closed
subset of Rd). Let LK(X) be the linear span of the set {K(x′, ·) : x′ ∈ X}, i.e., the set of all
functions f : X→ R of the form

f(x) =
N∑

j=1

cjK(xj, x)(4.12)

for all possible choices of N ∈ N, c1, . . . , cN ∈ R, and x1, . . . , xN ∈ X. It is easy to see that
LK(X) is a vector space: for any two functions f, f ′ of the form (4.12), their sum is also of
that form; if we multiply any f ∈ LK(X) by a scalar c ∈ R, we will get another element of
LK(X); and the zero function is clearly in LK(X). It turns out that, for any (Mercer) kernel
K, we can complete LK(X) into a Hilbert space of functions that can potentially represent
any continuous function from X into R, provided K is chosen appropriately.

The following result is essential (for the proof, see Section 2.4 of Cucker and Zhou
[CZ07]):

Theorem 4.1. Let X be a closed subset of Rd, and let K : X×X→ R be a Mercer kernel.
Then there exists a unique Hilbert space (HK , 〈·, ·〉K) of real-valued functions on X with the
following properties:

(1) For all x ∈ X, the function Kx(·) := K(x, ·) is an element of HK, and 〈Kx, Kx′〉K =
K(x, x′) for all x, x′ ∈ X.

(2) The linear space LK(X) is dense in HK, i.e., for any f ∈ HK and any ε > 0 there
exist some N ∈ N, c1, . . . , cN ∈ R, and x1, . . . , xN ∈ X, such that

∥∥∥∥∥f −
N∑

j=1

cjKxj

∥∥∥∥∥
K

< ε.

(3) For all f ∈ HK and all x ∈ X,

f(x) = 〈Kx, f〉K .(4.13)

35

Moreover, the functions in HK are continuous. The Hilbert space HK is called the Repro-
ducing Kernel Hilbert Space (RKHS) associated with K; the property (4.13) is referred to
as the reproducing kernel property.

Remark 4.4. The reproducing kernel property essentially states that the value of any
function f ∈ HK at any point x ∈ X can be extracted by taking the inner product of f and
the function Kx(·) = K(x, ·), i.e., a copy of the kernel K centered at the point x. It is easy
to prove when f ∈ LK(X). Indeed, if f has the form (4.12), then

〈f,Kx〉K =

〈
N∑

j=1

cjKxj , Kx

〉

K

=
N∑

j=1

cj
〈
Kxj , Kx

〉
K

=
N∑

j=1

cjK(xj, x)

= f(x).

Since any f ∈ HK can be expressed as a limit of functions from LK(X), the proof of (4.13)
for a general f follows by continuity.

For any function f : X→ R, define the sup norm by ‖f‖∞ := supx∈X |f(x)|.
Lemma 4.1. Let HK be the RHKS generated by a kernel K and let CK = supx∈X

√
K(x, x).

If CK < ∞, the values of any function f ∈ HK can be bounded in terms of the kernel as
follows:

‖f‖∞ ≤ CK‖f‖K .(4.14)

Proof. For any f ∈ HK and x ∈ X,

|f(x)| = |〈f,Kx〉K | ≤ ‖f‖K‖Kx‖K = ‖f‖K
√
K(x, x),

where the first step is by the reproducing kernel property, and the second step is by Cauchy–
Schwarz. Taking the supremum of both sides over X yields (4.14). �

4.3. Kernels and weighted inner products

This section gives a fuller explanation of how to understand the use of an RKHS norm
for the purpose of regularization. For a given learning application it makes sense to select
the norm so that predictors that we might expect to naturally arise would be the ones with
smaller norm. It is similar to the selection of a prior probability distribution in the Bayesian
estimation framework.

Let X denote a closed subset of Rd for some d ≥ 1. Suppose we wish to consider classifiers
of the form g(x) = sgn(

∑
i ciψi(x)) for some set of functions ψ1, . . . , ψn on X. For a given

learning problem these functions would typically represent features that we expect to be
useful for classification. One way to view the kernel method is as a way to introduce an
inner product, and hence a norm, for linear combinations of the ψ’s. See the final two
paragraphs of this section.

36

To explore this view we need to understand how the choice of kernel affects the norms
of functions. This is addressed by the following two propositions and some example kernels.
For simplicity we begin by considering the case of finitely many basis functions (i.e. a
finite dictionary of features). At the end of the section we return to the application to
regularization.

Proposition 4.3. Let ψ1, . . . , ψn be linearly independent continuous functions on a set
X, assumed to be a closed subset of a finite dimensional Euclidean space. Let K be the Mercer
kernel defined by K(x, x′) =

∑n
i=1 ψi(x)ψi(x

′). Then ψ1, . . . , ψn is a complete orthonormal
basis for the RKHS (HK , 〈·, ·〉K) . That is, HK is the set of linear combinations of ψ1, . . . , ψn,
and 〈ψi, ψj〉K = 1{i=j}.

Proof. Let Hψ be the linear span of ψ1, . . . , ψn, which is a complete vector space. Each
f ∈ Hψ has a representation of the form f =

∑n
i=1 ciψi, and the representation is unique

because of the assumed linear independence of ψ1, . . . , ψn. We can thus define an inner
product 〈·, ·〉ψ on Hψ by 〈 n∑

i=1

ciψi,
n∑

j=1

c′jψj

〉

ψ

=
n∑

i=1

cic
′
i.

Then (Hψ, 〈·, ·〉ψ) is a finite dimensional Hilbert space and ψ1, . . . , ψn forms a complete
orthonormal basis for it. To complete the proof we show that this space equals (HK , 〈·, ·〉K).

The assumed form of K implies that for any fixed x ∈ X, Kx ∈ Hψ, so as vector spaces,
HK ⊂ Hψ. Also,

〈Kx, Kx′〉ψ =

〈 n∑

i=1

ψi(x)ψi(·),
n∑

j=1

ψj(x
′)ψj(·)

〉

ψ

=
n∑

i=1

n∑

j=1

ψi(xi)ψj(x
′
j)1{i=j}

=
n∑

i=1

ψi(xi)ψi(x
′
i) = K(x, x′)

= 〈Kx, Kx′〉K
So 〈·, ·〉ψ restricted to the subspace HK agrees with 〈·, ·〉K . That is, the Hilbert space
(HK , 〈·, ·〉K) is a subspace of (Hϕ, 〈·, ·〉ϕ). To show that the spaces are equal it suffices
to show that the orthogonal complement of HK within Hψ, (HK)⊥, contains only the zero
vector. Let g ∈ (HK)⊥. Since g ∈ Hψ there is a vector c so that g =

∑n
j=1 cjψj, and since

g ⊥ HK ,

0 = 〈Kx, g〉ψ =

〈 n∑

i=1

ψi(x)ψi,
n∑

j=1

cjψj

〉

ψ

=
∑

i

ciψi(x)

for all x. By the assumed linear independence of ψ1, . . . , ψn, it follows that c = 0 so that
g = 0, as claimed. �

The following proposition generalizes Proposition 4.3 to the case of a countably infinite
basis. The assumption of linear independence is replaced by a stronger assumption. Let

37

`2 = {c ∈ RN :
∑∞

i=1 c
2
i < ∞}. With the inner product 〈c, c′〉 =

∑∞
i=1 cic

′
i, `

2 is a Hilbert
space.

Proposition 4.4. Suppose K is a continuous kernel on X×X that has a representation
of the form

(4.15) K(x, x′) =
∞∑

i=1

ψi(x)ψi(x
′),

such that the functions ψi are continuous functions on X, and the following condition holds:

(4.16) c ∈ `2 and
∞∑

i=1

ciψi ≡ 0 =⇒ c = 0.

Then ψ1, ψ2, . . . forms a complete orthonormal basis for the RKHS HK .

Proof. Let Hψ = {∑∞i=1 ciψi : c ∈ `2} . By the assumption (4.16), each f ∈ Hψ is
represented by a unique c ∈ `2. We can thus define an inner product 〈·, ·〉ψ on Hψ by

〈 ∞∑

i=1

ciψi,
∞∑

j=1

c′jψj

〉

ψ

=
n∑

i=1

cic
′
i.

Moreover, the mapping c→∑
i ciψi from `2 to Hψ is a Hilbert space isomorphism. The rest

of the proof is the same as the proof of Proposition 4.3. �

Remark 4.5. If K and the ψi’s are continuous and satisfy (4.15), then the convergence
in (4.15) is absolute and uniform on compact subsets of X. (Details in problem set 4, 2017).

Some examples popular in machine learning are given in the previous section. Additional
examples, along with their expansions, are given here.

Example 4.1. (Bilinear kernels) Suppose K(x, x′) = 1 + 〈x, x′〉 for x, x′ ∈ Rd. Then
K(x, x′) =

∑n
i=0 ψi(x)ψi(x

′) with ψ0 ≡ 1 and ψi(x) = xi for 1 ≤ i ≤ d. Thus HK consists of
functions of the form fb,w(x) = b+ 〈w, x〉 for b ∈ R and w ∈ Rd, and ‖fb,w‖2

K = b2 + ‖w‖2.

Example 4.2. (Polynomial kernels) Suppose K(x, x′) = (1 + 〈x, x′〉)k for x, x′ ∈ Rd.
Then

K(x, x′) = (1 + x1x
′
1 + x2x

′
2 + · · ·+ xdx

′
d)
k

=
∑

(j0,...,jd)∈Zd+1
+ :j0+...+jd=k

(
k

j0 j1 · · · jd

) d∏

i=1

xjii (x′i)
ji ,

where
(

k
j0 j1 ··· jd

)
is the multinomial coefficient. Thus, HK has a complete orthonormal basis

consisting of all functions of the form
√(

k

j0 j1 · · · jd

) d∏

i=1

xjii

38

for (j0, . . . , jd) ∈ Zd+1
+ : j0 + . . . + jd = k. The functions in HK consist of the multivariate

polynomials on Rd with degree less than or equal to k.

Example 4.3. (Gaussian kernel in one dimension) Suppose K(x, x′) = exp
(
− (x−x′)2

2

)

for x, x′ ∈ R. Then

K(x, x′) = exp

(
−x

2 + (x′)2

2

)
exp(xx′)

= exp

(
−x

2 + (x′)2

2

) ∞∑

i=0

(xx′)i

i!

=
∞∑

i=1

ψi(x)ψi(x
′)

where ψi(x) = exp
(
−x2

2

)
xi√
i!
.

To check condition (4.16), suppose c ∈ ` is such that
∑∞

i=1 ciψi(x) ≡ 0, or equivalently,

h(x) ,
∑∞

i=1 ci
xi√
i!
≡ 0. The series defining h and its derivatives of all orders are absolutely

convergent on compact subsets, so by the dominated convergence theorem h can be repeatedly
differentiated term by term. Thus, the kth derivative of h evaluated at x = 0 is given by:

Dkh(0) =
∞∑

i=1

ciD
k

(
xi√
i!

) ∣∣∣∣
x=0

= ck
√
k!

The assumption h ≡ 0 therefore implies that ck = 0 for all k, or c = 0. Thus, condition
(4.16) holds. Therefore, by Proposition 4.4, ψ1, ψ2, . . . forms a complete orthonormal basis
for the RKHS HK .

Example 4.4. (Radial basis functions) Suppose K(x, x′) = exp
(
−‖x−x′‖2

2

)
for x, x′ ∈

Rd. The functions of the form Kx(·) = exp
(
−‖x− · ‖2

2

)
are called radial basis functions. The

radial basis functions each have unit norm and form a complete basis for HK , although they
are not orthonormal. A complete orthonormal basis for HK can be found by deriving a series
representation for K:

K(x, x′) = exp

(
−‖x‖

2 + ‖x′‖2

2

)
exp(〈x, x′〉)

= exp

(
−‖x‖

2 + ‖x′‖2

2

) ∞∑

k=0

〈x, x′〉k
k!

39

Combining analysis from the previous two examples, we find that HK has a complete or-
thonormal basis consisting of functions of the form:

exp

(
−‖x‖

2

2

)√
1

j1! · · · jd!
d∏

i=1

xjii

for d ≥ 0 and (j1, . . . , jd) ∈ Zd+. The functions in HK thus include all the multivariate
polynomials on Rd.

The following proposition shows that Mercer kernels can be represented by series expan-
sions in great generality.

Proposition 4.5. (Mercer’s representation theorem, measure free version) Suppose K(x, y)
is a Mercer kernel on X×X, where X is a closed subset of Rd (or more generally, X could be
any complete separable metric space). Then there is a sequence of continuous functions (ψi)
on X such that (4.15) and (4.16) hold, and ψ1, ψ2, . . . forms a complete orthonormal basis
for the RKHS HK .

Proof. (Not self-contained. Reading is optional.) Mercer’s theorem is usually stated
and proved based on the integral operator associated with K and a reference measure ν
on the Borel subsets of X with support X. The representations have the form K(x, y) =∑∞

i=1 λiψi(x)ψi(y), but the nonnegative constants λi can be incorporated into the functions
ψi, because we are not concerned with orthonormality of the functions relative to the ref-
erence measure. Since X is assumed to be separable there exists a countable dense subset
{q1, q2, . . .} of X. Given K, by putting a sufficiently small positive probability mass on each of
these points we can construct a discrete probability measure ν which is strictly positive on X
(i.e. every open nonempty set has strictly positive measure) such that

∫
X×XK(x, y)2ν(dx)ν(dy) <

∞, from which it follows that K ∈ A(X, ν), where A(X, ν) is defined in [FM09]. Therefore
we can apply [FM09, Theorem 2.4] to conclude the existence of a sequence of continuous
functions (ψi) on X such that (4.15) is satisfied. The sequence satisfies (4.16) because the
functions in the sequence are orthogonal in L2(X, ν). The last statement of the proposition
follows from Proposition 4.4. �

Example 4.5. (Cauchy kernel function) The Cauchy kernel function is given by K(x, x′) =
1

1+γ‖x−x′‖2 for x, x′ ∈ Rd, where γ is a scale parameter. The Cauchy kernel is similar to the

Gaussian kernel, but it decreases much more slowly as ‖x−x′‖ → ∞. The positive semidefi-
nite property follows from the fact that the Fourier transform of 1

1+γ‖x‖2 is real and positive.

Although Proposition 4.5 applies for this kernel, the proof of the proposition is nonconstruc-
tive, and there does not seem to be a natural way to find a complete orthonormal basis as
there is for the case of Gaussian kernel function. Still, in applications, the Cauchy kernel
can be used in much the same way as the Gaussian kernel, for example in (8.52) or (8.53).

Kernels as measures of complexity of functions. Section 8.6 considers classifiers
of the form sgn(f) and Chapter 9 considers regression functions of the form f , where f is

assumed to be in some class of functions, and the ERM algorithm selects f̂ as the solution
to an optimization problem. To avoid overfitting, the complexity of f is either constrained,

40

or a penalty involving the complexity of f is added to the objective function. For many

applications it is reasonable to optimize over functions f having the form f(x) =
∑

j ajψ̃j(x),

such that a finite or infinite set of functions (ψ̃j) has been predetermined to fit the application
well. In order to express prior knowledge about which coefficients are likely to be larger in the
application, a sequence of positive weights (wi)i≥1 could be selected, such that the complexity

of a function f(x) =
∑

j ajψ̃j(x) could be defined to be
∑

j a
2
j/wj. A larger weight wj for a

particular j, yields a smaller complexity cost for having a large value of aj.

If the weights (wj) are chosen such that K defined by K(x, x′) =
∑

j wjψ̃j(x)ψ̃j(x
′)

is a Mercer kernel (roughly speaking, this requires that most of the weights are not too

large) then we can also write K(x, x′) =
∑

i ψi(x)ψi(x
′), where ψi =

√
wiψ̃i. Therefore, since

f(x) =
∑

j
aj√
wj
ψj(x), it follows from Proposition 4.3 or 4.4 that ‖f‖2

K =
∑

j a
2
j/wj. In other

words, the complexity measure is the squared RKHS norm of f for the kernel K. In this
sense, the kernel K defines a measure of complexity of f.

41

Part 2

Basic Theory

CHAPTER 5

Formulation of the learning problem

Now that we have seen an informal statement of the learning problem, as well as acquired
some technical tools in the form of concentration inequalities, we can proceed to define the
learning problem formally. Recall that the basic goal is to be able to predict some random
variable Y of interest from a correlated random observation X, where the predictor is to
be constructed on the basis of n i.i.d. training samples (X1, Y1), . . . , (Xn, Yn) from the joint
distribution of (X, Y). We will start by looking at an idealized scenario (often called the
realizable case in the literature), in which Y is a deterministic function of X, and we happen
to know the function class to which it belongs. This simple set-up will let us pose, in a clean
form, the basic requirements a learning algorithm should satisfy. Once we are done with the
realizable case, we can move on to the general setting, in which the relationship between X
and Y is probabilistic and not known precisely. This is often referred to as the model-free or
agnostic case.

This order of presentation is, essentially, historical. The first statement of the learning
problem is hard to trace precisely, but the “modern” algorithmic formalization seems to
originate with the 1984 work of Valiant [Val84] on learning Boolean formulae. Valiant
has focused on computationally efficient learning algorithms. The agnostic (or model-free)
formulation was first proposed and studied by Haussler [Hau92] in 1992.

The material in this chapter closely follows the exposition of Vidyasagar [Vid03, Ch. 3].

5.1. The realizable case

We start with an idealized scenario, now often referred to in the literature as the realizable
case. The basic set-up is as follows. We have a set X (often called the feature space or
input space) and a family P of probability distributions on X. We obtain an i.i.d. sample
Xn = (X1, . . . , Xn) drawn according to some P ∈ P, which we do not know (although it may
very well be the case that P is a singleton, |P| = 1, in which case we, of course, do know P).
We will look at two basic problems:

(1) Concept learning: There is a class C of subsets of X, called the concept class, and
an unknown target concept C∗ ∈ C is picked by Nature. For each feature Xi in our
sample Xn, we receive a binary label Yi = 1{Xi∈C∗}. The n feature-label pairs form
the training set

(X1, Y1) = (X1,1{X1∈C∗}), . . . , (Xn, Yn) = (Xn,1{Xn∈C∗}).(5.1)

The objective is to approximate the target concept C∗ as accurately as possible.
(2) Function learning: There is a class F of functions f : X → [0, 1], and an unknown

target function f ∗ ∈ F is picked by nature. For each input point Xi in the sample

44

Xn, we receive a real-valued output Yi = f ∗(Xi). The n input-output pairs

(X1, Y1) = (X1, f
∗(X1)), . . . , (Xn, f

∗(Xn)).(5.2)

The objective is to approximate the target function f ∗ as accurately as possible.
(Note: the requirement that f map X into [0, 1] is imposed primarily for technical
convenience; using appropriate moment and/or tail behavior assumptions on P , it
is possible to remove this requirement, but the resulting proofs will be somewhat
laborious.)

We will now consider these two problems separately.

5.1.1. Concept learning. As we already stated, the goal of concept learning is to
approximate the target concept C∗ as accurately as possible on the basis of the training data
(5.1). This is done by means of a learning algorithm. An algorithm of this sort should be
capable of producing an approximation to C∗ given the training set of the form (5.1) of any
size n. More precisely:

Definition 5.1. A concept learning problem is specified by a triple (X,P,C), where X
is the feature space, P is a family of probability distributions on X, and C is a concept class.
A learning algorithm for (X,P,C) is a sequence A = {An}∞n=1 of mappings

An : (X× {0, 1})n → C.

If P consists of only one distribution P , then the mappings An may depend on P ; other-
wise, they may only depend on P as a whole. The idea behind the above definition is that
for each training set size n we have a definite procedure for forming an approximation to the
unknown target concept C∗ on the basis of the training set of that size.

For brevity, let us denote by Zi the ith training pair (Xi, Yi) = (Xi,1{Xi∈C∗}), and let us
denote by Z the set X× {0, 1}. Given a training set Zn = (Z1, . . . , Zn) ∈ Zn and a learning
algorithm A, the approximation to C∗ is

Ĉn = An(Zn) = An(Z1, . . . , Zn) = An
(
(X1,1{X1∈C∗}), . . . , (Xn,1{Xn∈C∗})

)
.

Note that Ĉn is an element of the concept class C (by definition), and that it is a random
variable since it depends on the random sample Zn. It is often referred to as a hypothesis
output by the learning algorithm A.

How shall we measure the goodness of this approximation Ĉn? A natural thing to do is
the following. Suppose now we draw a fresh feature X from the same distribution P ∈ P

as the one that has generated the training feature set Xn and venture a hypothesis that X

belongs to the target concept C∗ if X ∈ Ĉn, i.e., if 1{X∈Ĉn} = 1. When would we make a
mistake, i.e., misclassify X? There are two mutually exclusive cases:

(1) X is in C∗, but not in Ĉn, i.e., X ∈ C∗ ∩ Ĉc
n, where Ĉc

n = X\Ĉn is the complement

of Ĉn in X.
(2) X is not in C∗, but it is in Ĉn, i.e., X ∈ (C∗)c ∩ Ĉn.

Thus, we will misclassify X precisely when it happens to lie in the symmetric difference

C∗4Ĉn := (C∗ ∩ Ĉc
n) ∪ ((C∗)c ∩ Ĉn).

This will happen with probability P (C∗4Ĉn) — note, by the way, that this is a random

number since Ĉn depends on the training data Zn. At any rate, we take the P -probability of

45

the symmetric difference C∗4Ĉn as our measure of performance of A. In order to streamline
the notation, let us define the risk (or loss) of any C ∈ C w.r.t. C∗ and P as

LP (C,C∗) := P (C4C∗) = P (X ∈ C4C∗).
Exercise 5.1. Prove that

LP (C,C∗) =

∫

X

∣∣1{x∈C} − 1{x∈C∗}
∣∣2 P (dx).

In other words, LP (C,C∗) is the squared L2(P) norm of the difference of the indicator
functions IC(·) = 1{·∈C} and IC∗(·) = 1{·∈C∗}, LP (C,C∗) = ‖IC − IC∗‖2

L2(P).

Roughly speaking, we will say that A is a good algorithm if

LP (Ĉn, C
∗)→ 0 as n→∞(5.3)

for any P ∈ P and any C∗ ∈ C. Since Ĉn is a random element of C, the convergence in (5.3)
can only be in some probabilistic sense. In order to make things precise, for any C ∈ C let
us denote by PC the joint distribution of a pair Z = (X, Y), where X ∼ P and Y = 1{X∈C}.
Then we define the following two quantities:

rA(n, ε, P) := sup
C∈C

P n
C (Zn ∈ Zn : LP (An(Zn), C) > ε)

r̄A(n, ε,P) := sup
P∈P

rA(n, ε, P)

where P n
C denotes the n-fold product of P . For a fixed P (which amounts to assuming that

the features Xn were drawn i.i.d. from P), rA(n, ε, P) quantifies the worst-case “size” of
the set of “bad” samples, where we say that a sample Xn is bad if it causes the learning

algorithm A to output a hypothesis Ĉn = An(Zn) whose risk is larger than ε. The worst
case is over the entire concept class C, since we do not know the target concept C∗. The
quantity r̄A(n, ε,P) accounts for the fact that we do not know which P ∈ P has generated
the training feature points.

With all these things defined, we can now state the following:

Definition 5.2. (PAC for concept learning in realizable learning setting) A learning
algorithm A = {An} is probably approximately correct (or PAC) to accuracy ε if

lim
n→∞

r̄A(n, ε,P) = 0.(5.4)

We say that A is PAC if it is PAC to accurary ε for every ε > 0. The concept class C

is called PAC learnable to accuracy ε w.r.t. P if there exists an algorithm that is PAC to
accuracy ε. Finally, we say that C is PAC learnable if there exists an algorithm that is PAC.

The term “probably approximately correct,” which seems to have first been introduced

by Angluin [Ang88], is motivated by the following observations. First, the hypothesis Ĉn
output by A for some n is only an approximation to the target concept C∗. Thus, LP (Ĉn, C

∗)

will be, in general, nonzero. But if it is small, then we are justified in claiming that Ĉn is

approximately correct. Secondly, we may always encounter a bad sample, so LP (Ĉn, C
∗) can

be made small only with high probability. Thus, informally speaking, a PAC algorithm is one
that “works reasonably well most of the time.”

46

An equivalent way of phrasing the statement that a learning algorithm is PAC is as
follows: For any ε > 0 and δ > 0, there exists some n(ε, δ) ∈ N, such that

P n
C (Zn ∈ Zn : LP (An(Zn), C) > ε) ≤ δ, ∀n ≥ n(ε, δ),∀C ∈ C,∀P ∈ P.(5.5)

In this context, ε is called the accuracy parameter, while δ is called the confidence parameter.
The meaning of this alternative characterization is as follows. If the sample size n is at least

n(ε, δ), then we can state with confidence at least 1− δ that the hypothesis Ĉn will correctly
classify a fresh random point X ∈ X with probability at least 1− ε.

The two problems of interest to us are:

(1) Determine conditions under which a given concept class C is PAC learnable.
(2) Obtain upper and lower bounds on n(ε, δ) as a function of ε, δ. The following

terminology is often used: the smallest number n(ε, δ) such that (5.5) holds is
called the sample complexity.

5.1.2. Function learning. The goal of function learning is to construct an accurate
approximation to an unknown target function f ∗ ∈ F on the basis of training data of the
form (5.2). Analogously to the concept learning scenario, we have:

Definition 5.3. A function learning problem is specified by a triple (X,P,F), where X is
the input space, P is a family of probability distributions on X, and F is a class of functions
f : X→ [0, 1]. A learning algorithm for (X,P,F) is a sequence A = {An}∞n=1 of mappings

An : (X× [0, 1])n → F.

As before, let us denote by Zi the input-output pair (Xi, Yi) = (Xi, f
∗(Xi)) and by Z the

product set X× [0, 1]. Given a training set Zn = (Z1, . . . , Zn) ∈ Zn and a learning algorithm
A, the approximation to f ∗ is

f̂n = An(Zn) = An ((X1, f
∗(X1)), . . . , (Xn, f

∗(Xn))) .

As in the concept learning setting, f̂n is a random element of the function class F.
In order to measure the performance of A, we again imagine drawing a fresh input point

X ∈ X from the same distribution P ∈ P that has generated the training inputs Xn. A

natural error metric is the squared loss |f̂n(X)− f ∗(X)|2. As before, we can define the risk
(or loss) of any f ∈ F w.r.t. f ∗ and P as

LP (f, f ∗) := EP |f(X)− f ∗(X)|2 = ‖f − f ∗‖2
L2(P) =

∫

X

|f(x)− f ∗(x)|2P (dx).(5.6)

Thus, the quantity of interest is the risk of f̂n:

LP (f̂n, f
∗) =

∫

X

|f̂n(x)− f ∗(x)|2P (dx).

Keep in mind that LP (f̂n, f
∗) is a random variable, as it depends on f̂n, which in turn

depends on the random sample Zn ∈ Zn.

Remark 5.1. The concept learning problem is, in fact, a special case of the function
learning problem. Indeed, fix a concept class C and consider the function class F consisting
of the indicator functions of the sets in C:

F = {IC : C ∈ C}.
47

Then for any f = IC and f ∗ = IC∗ we will have

LP (f, f ∗) = ‖IC − IC∗‖2
L2(P) = P (C4C∗),

which is the error metric we have defined for concept learning.

If for each f ∈ F we denote by Pf the joint distribution of a pair Z = (X, Y), where
X ∼ P and Y = f(X), then for a given learning problem (X,P,F) and a given algorithm A

we can define

rA(n, ε, P) := sup
f∈F

P n
f (Zn ∈ Zn : LP (An(Zn), f) > ε)

r̄A(n, ε,P) := sup
P∈P

rA(n, ε, P)

for every n ∈ N and ε > 0.The meaning of these quantities is exactly parallel to the corre-
sponding quantities in concept learning, and leads to the following definition:

Definition 5.4. (PAC for function learning in realizable learning setting) A learning
algorithm A = {An} is PAC to accuracy ε if

lim
n→∞

r̄A(n, ε,P) = 0,

and PAC if it is PAC to accuracy ε for all ε > 0. A function class F = {f : X → [0, 1]}
is PAC-learnable (to accuracy ε) w.r.t. P if there exists an algorithm A that is PAC for
(X,P,F) (to accuracy ε).

An equivalent way of stating that A is PAC is that, for any ε, δ > 0 there exists some
n(ε, δ) ∈ N such that

P n (Zn ∈ Zn : LP (An(Zn), f) > ε) ≤ δ, ∀n ≥ n(ε, δ),∀f ∈ F,∀P ∈ P.

The smallest n(ε, δ) ∈ N for which the above inequality holds is termed the sample complex-
ity.

5.2. Examples of PAC-learnable concept classes

To make these ideas concrete, let us consider two examples of PAC-learnable concept
classes. Given what we know at this point, the only way to show that a given concept
class is PAC-learnable is to exhibit an algorithm which is PAC. Later on, we will develop
generic tools that will allow us to determine PAC-learnability without having to construct
an algorithm for each separate case.

5.2.1. Finite concept classes. First, we show that any finite concept class is PAC-
learnable. Thus, consider a triple (X,P,C), where X and P are arbitrary, but the concept
class is finite: |C| <∞.

Let Zn = (Z1, . . . , Zn) be a training set, where, as usual, Zi = (Xi, Yi) with Yi = 1{Xi∈C∗}.
We say that the ith training pair Zi is a positive example if Yi = 1 (i.e., if Xi ∈ C∗), and is
a negative example otherwise. By hypothesis, C = {Cm}Mm=1. Consider the (random) set

F(Zn) :=
{
m ∈ [M] : Yi = 1{Xi∈Cm} for all i ∈ [n]

}
.

48

In other words, F(Zn) consists of all concepts in C that are consistent with the training data.
If C∗ = Cm∗ , then evidently m∗ ∈ F(Zn), so F(Zn) is nonempty. We consider an algorithm
that returns an arbitrary element of F(Zn), say, the smallest one:

Ĉn = An(Zn) = Cm̂n , where m̂n = min {m : m ∈ F(Zn)} .(5.7)

Theorem 5.1. The algorithm A defined in (5.7) satisfies

rA(n, ε,P) ≤M(1− ε)n.(5.8)

Therefore, this algorithm is PAC, so the class C is PAC-learnable.

Proof. Fix some P ∈ P and ε > 0 and consider the set

Bm∗,P (ε) := {m ∈ [M] : P (Cm4Cm∗) > ε} .
This set is deterministic, and evidently

P n
[
P (Ĉn4C∗) > ε

]
= P n [m̂n ∈ Bm∗,P]

=
∑

m∈Bm∗,P

P n[m̂n = m].

For anym ∈ Bm∗,P , the event {m̂n = m} happens only ifm ∈ F(Zn)∩Bm∗,P . Since C∗ = Cm∗
fits the training data perfectly [and, in particular, m∗ ∈ F(Zn)], Cm will fit the training data
perfectly if and only if none of the Xi’s fall into Cm∗4Cm. If m ∈ F(Zn) ∩ Bm∗,P , then it
must also be the case that P (Cm4Cm∗) > ε. Thus,

P n[m̂n = m] ≤ P n [Xi 6∈ Cm4Cm∗ for all i ∈ [n]]

≤ (1− ε)n,
where the second inequality uses the fact that the Xi’s are independent and the fact that,
for all m ∈ Bm∗,P , P (Cm4Cm∗) > ε. Since |Bm∗,P | ≤M , we obtain the bound

P n
[
P (Ĉn4C∗) > ε

]
≤M(1− ε)n.

Since this bound holds for all P ∈ P and for all choices of C∗, we get (5.8). �

Corollary 5.1. The sample complexity of learning a finite concept class of cardinality
M satisfies

n(ε, δ) ≥ 1

ε
log

(
M

δ

)
.

Proof. From (5.8), we see that rA(n, ε,P) ≤ δ for all n satisfying M(1− ε)n ≤ δ. Since
(1− ε)n ≤ e−nε, a sufficient condition is δ ≥ ε−1 log(M/δ). �

5.2.2. Axis-parallel rectangles. We take X = [0, 1]2, the unit square in the plane, let
P be the class of all probability distributions on X (w.r.t. the usual Borel σ-algebra), and let
C be the collection of all axis-parallel rectangles : that is, a set C is in C if and only if it is of
the form

C = [a1, b1]× [a2, b2]

=
{

(x1, x2) ∈ [0, 1]2 : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2

}

49

C⇤

a1 b1

a2

b2

Figure 1. An axis-parallel rectangle.

for some 0 ≤ a1 ≤ b1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ 1 (see Figure 1).
We now describe our learning algorithm. Given a training set Zn =

(
Z1, . . . , Zn

)
=(

(X1, Y1), . . . , (Xn, Yn)
)
, we partition the examples into positive and negative ones, as before.

Our algorithm A = {An}∞n=1 is the following intuitive rule: for each n, we take

Ĉn = An(Zn) = smallest rectangle C ∈ C that contains all positive examples in Zn.(5.9)

Figure 1 shows a particular instance of this algorithm. We will now prove the following
result, originally due to Blumer et al. [BEHW89]:

C⇤

a1 b1

a2

b2

+

+
+
+

+
+
+

+
+

bCn

o

o

o

o

o

o

o

o
o

Figure 2. The hypothesis Ĉn produced by algorithm (5.9). Positive (resp.,
negative) examples are shown as crosses (resp., zeros).

Theorem 5.2. The algorithm A defined in (5.9), i.e., the one that returns the smallest
axis-parallel rectangle that encloses all positive examples in Zn, satisfies

r̄A(n, ε,P) ≤ 4(1− ε/4)n.(5.10)

Therefore, this algorithm is PAC, and the class C is PAC-learnable.

Proof. Since no positive example can lie outside C∗, the hypothesis Ĉn produced by

the algorithm (5.9) must lie inside C∗: Ĉn ⊆ C∗. Therefore,

Ĉn4C∗ = C∗ ∩ (Ĉn)c ≡ C∗\Ĉn.(5.11)

50

If P (C∗) < ε, then from (5.11) it follows that LP (Ĉn, C
∗) = P

(
C∗\Ĉn

)
≤ P (C∗) < ε. Thus,

we will assume that P (C∗) ≥ ε. Suppose that C∗ = [a1, b1]×[a2, b2] and Ĉn = [â1, b̂1]×[â2, b̂2],
and consider the following four rectangles:

V1 = [a1, â1)× [a2, b2],

V2 = (̂b1, b1]× [a2, b2],

H1 = [a1, b1]× [a2, â2),

H2 = [a1, b1]× (̂b2, b2]

(see Figure 3). From (5.11), we see that the symmetric difference Ĉn4C∗ is exactly equal

V1 V2

H1

H2

Figure 3. The four rectangles V1, V2, H1, H2 used in the proof of Theo-

rem 5.2. The target concept C∗ is in blue, the hypothesis Ĉn returned by our
algorithm is green.

to the union of these four rectangles, which we will denote by E:

Ĉn4C∗ = E := V1 ∪ V2 ∪H1 ∪H2.

(Note, by the way, that V1, V2, H1, H2, E are all random rectangles, since they depend on the

hypothesis Ĉn and thus on the random training set Zn.) Our goal is show that P (E) ≤ ε
with high probability.

We claim that, with probability at least 1−4(1−ε/4)n, each of the rectangles V1, V2, H1, H2

has P -probability of no more than ε/4. Assuming this is the case, then P (E) = P (V1 ∪ V2 ∪
H1 ∪H2) ≤ ε with probability at least 1− 4(1− ε/4)n. From this, we conclude that, for any
C∗,

P n
C∗ (Zn ∈ Zn : LP (An(Zn), C∗) > ε) ≤ P n

C∗

(
Zn ∈ Zn : P (E) > ε

)
≤ 4(1− ε/4)n.(5.12)

Since this bound holds for all C∗ and for all P ∈ P, we get (5.10).

51

It now remains to prove the claim. We first focus on P (V1). To that end, let A1 be the
smallest rectangle of the form [a1, a]× [a2, b2], such that P (A1) ≥ ε/4. Such a rectangle exists
by the continuity of probability, and, moreover, P ([a1, a)× [a2, b2]) ≤ ε/4. Consider the event

n⋃

i=1

{Xi ∈ A1},(5.13)

i.e., that A1 is hit by at least one training example. If this event occurs, then V1 ⊂ [a1, a)×
[a2, b2], so if this event occurs, P (V1) ≤ ε/4. In other words,

n⋃

i=1

{Xi ∈ A1} ⊆ {P (V1) ≤ ε/4}.

or, taking the contrapositive,

{P (V1) > ε/4} ⊆
n⋂

i=1

{Xi 6∈ A1}.

The probability of the event that there are no training examples in A1 can be computed as

P

(
n⋂

i=1

{Xi 6∈ A1}
)

=
n∏

i=1

P (Xi 6∈ A1)(5.14)

= [P (X 6∈ A1)]n(5.15)

≤ (1− ε/4)n ,(5.16)

where (5.14) is by independence of the Xi’s, (5.15) follows from the fact that the Xi’s are
identically distributed, and (5.16) follows from the fact that P (A1) ≥ ε/4 by construction.
Therefore,

P
[
P (V1) > ε/4

]
≤ P

[
Xi 6∈ A1, ∀i

]
≤ (1− ε/4)n.

Similar reasoning applies to V2, H1, H2. Thus, with probability at least 1− 4(1− ε/4)n,

P (V1) ≤ ε/4, P (V2) ≤ ε/4, P (H1) ≤ ε/4, P (H2) ≤ ε/4,

and the claim is proved. �

Corollary 5.2. The sample complexity of learning axis-parallel rectangles satisfies

n(ε, δ) ≥ 4 log(4/δ)

ε
.(5.17)

Proof. From (5.10), r̄A(n, ε,P) ≤ δ for all n such that 4(1 − ε/4)n ≤ δ. Following the
same reasoning as in the proof of Corollary 5.1, we get (5.17). �

5.3. Agnostic (or model-free) learning

The realizable setting we have focused on in Section 5.1 rests on certain assumptions,
which are not always warranted:

52

• The assumption that the target concept C∗ belongs to C (or that the target function
f ∗ belongs to F) means that we are trying to fit a hypothesis to data, which are a
priori known to have been generated by some member of the model class defined by
C (or by F). However, in general we may not want to (or be able to) assume much
about the data generation process, and instead would like to find the best fit to the
data at hand using an element of some model class of our choice.
• The assumption that the training features (or inputs) are labelled noiselessly by

1{x∈C∗} (or by f(x)) rules out the possibility of noisy measurements or observations.
• Finally, even if the above assumption were true, we would not necessarily have a

priori knowledge of the concept class C (or the function class F) containing the
target concept (or function). In that case, the best we could hope for is to pick our
own model class and seek the best approximation to the unknown target concept
(or function) among the elements of that class.

The model-free learning problem (also referred to as the agnostic case), introduced by Haus-
sler [Hau92], takes a more general decision-theoretic approach and removes the above re-
strictions. It has the following ingredients:

• Sets X, Y, and U
• A class P of probability distributions on Z := X× Y
• A class F of functions f : X→ U (the hypothesis space)
• A loss function ` : Y × U→ [0, 1]

The learning process takes place as follows. We obtain an i.i.d. sample Zn = (Z1, . . . , Zn),
where each Zi = (Xi, Yi) is drawn from the same fixed but unknown P ∈ P. A learning
algorithm is a sequence A = {An}∞n=1 of mappings

An : Zn → F.

As before, let

f̂n = An(Zn) = An(Z1, . . . , Zn) = An((X1, Y1), . . . , (Xn, Yn)).

This is the hypothesis emitted by the learning algorithm based on the training data Zn. Note

that, by definition, f̂n is a random element of the hypothesis space F, and that it maps each

point x ∈ X to a point u = f̂n(x) ∈ U. Following the same steps as in the realizable case, we

evaluate the goodness of f̂n by its expected loss

LP (f̂n) := EP

[
`(Y, f̂n(X))

∣∣Zn
]

=

∫

X×Y
`(y, f̂n(x))P (dx, dy),

where the expectation is w.r.t. a random couple (X, Y) ∈ Z drawn according to the same P

but independently of Zn. Note that LP (f̂n) is a random variable since so is f̂n. In general,
we can define the expected risk w.r.t. P for every f in our hypothesis space by

LP (f) := EP [`(Y, f(X))] =

∫

X×Y
`(y, f(x))P (dx, dy)

as well as the minimum risk

L∗P (F) := inf
f∈F

LP (f).

53

Conceptually, L∗P (F) is the best possible performance of any hypothesis in F when the samples

are drawn from P ; similarly, LP (f̂n) is the actual performance of the algorithm with access
to a training sample of size n. It is clear from definitions that

0 ≤ L∗P (F) ≤ LP (f̂n) ≤ 1.

The goal of learning is to guarantee that LP (f̂n) is as close as possible to L∗P (F), whatever
the true P ∈ P happens to be. In order to speak about this quantitatively, we need to assess
the probability of getting a “bad” sample. To that end, we define, similarly to what we have
done earlier, the quantity

rA(n, ε) := sup
P∈P

P n
(
Zn ∈ Zn : LP (f̂n) > L∗P (F) + ε

)
(5.18)

for every ε > 0. Thus, a sample Zn ∼ P n is declared to be “bad” if it leads to a hypothesis
whose expected risk on an independent test point (X, Y) ∼ P is greater than the smallest
possible loss L∗P (F) by more than ε. We have the following:

Definition 5.5. (PAC for model-free setting) We say that a learning algorithm for a
problem (X,Y,U,P,F, `) is PAC to accuracy ε if

lim
n→∞

rA(n, ε) = 0.

An algorithm that is PAC to accuracy ε for every ε > 0 is said to be PAC. A learning problem
specified by a tuple (X,Y,U,P,F, `) is model-free (or agnostically) learnable (to accuracy ε)
if there exists an algorithm for it which is PAC (to accuracy ε).

Let us look at two examples.

5.3.1. Function learning in the realizable case. First we show that the model-free
framework contains the realizable set-up as a special case. To see this, let X be an arbitrary
space and let Y = U = [0, 1]. Let F be a class of functions f : X→ [0, 1]. Let PX be a family
of probability distributions PX on X. To each PX and each f ∈ F associate a probability
distribution PX,f on X×Y as follows: let X ∼ PX , and let the conditional distribution of Y
given X = x be given by

PY |X,f (B|X = x) = 1{f(x)∈B}

for all (measurable) sets B ⊆ Y. The resulting joint distribution PX,f is then uniquely
defined by its action on the rectangles A×B, A ⊆ X and B ⊆ Y:

PX,f (A×B) :=

∫

A

PY |X,f (B|x)PX(dx) =

∫

A

1{f(x)∈B}PX(dx)

Finally, let P = {PX,f : f ∈ F, PX ∈ PX}. Finally, let `(y, u) := |y − u|2.
Now, fixing a probability distribution P ∈ P is equivalent to fixing some PX ∈ PX and

some f ∈ F. A random element of Z = X × Y drawn according to such a P has the form
(X, f(X)), where X ∼ PX . An i.i.d. sequence (X1, Y1), . . . , (Xn, Yn) drawn according to P
therefore has the form

(X1, f(X1)), . . . , (Xn, f(Xn)),

54

which is precisely what we had in our discussion of function learning in the realizable case.
Next, for any P = PX,f ∈ P and any other g ∈ F, we have

LPX,f (g) =

∫

X×Y
|y − g(x)|2PX,f (dx, dy)

=

∫

X×Y
1{y=f(x)}|y − g(x)|2PX(dx)

=

∫

X

|f(x)− g(x)|2PX(dx)

= ‖f − g‖2
L2(PX),

which is precisely the risk LPX (g, f) that we have considered in our function learning formu-
lation earlier. Moreover,

L∗PX,f = inf
g∈F

LPX,f (g) = inf
g∈F
‖f − g‖2

L2(PX) ≡ 0.

Therefore,

rA(n, ε) = sup
PX,f∈P

P n
X,f

(
Zn ∈ Zn : LPX,f (f̂n) > L∗PX,f + ε

)

= sup
PX∈PX

sup
f∈F

P n
X

(
Xn ∈ Xn : LP (f̂n, f) > ε

)

≡ r̄A(n, ε,PX).

Thus, the function learning problem in the realizable case can be covered under the model-
free framework as well.

5.3.2. Learning to classify with noisy labels. An agnostic classification problem
can be built up from a realizable classification problem, as explained in this section. Start
with a realizable classification problem with binary labels (X,PX,C), under the usual 0-1 loss.
Here PX is a family of probability measures on (the Borel subsets of) X. Let C∗ denote the
target (i.e. true) concept and let C be another concept. Then for a given PX ∈ PX and target
concept C∗, the expected loss for using concept C to classify is LPX

(C∗, C) = PX(C∗4C). A

learning algorithm A = (An){n≥n} is sought to produce Ĉn = An(Zn) that makes PX(C∗4Ĉn)
small with high probability.

Let 0 ≤ η < 1/2 denote a crossover probability. Given the above realizable classification
problem, we can define a corresponding agnostic one by modeling the labels as noisy labels.
Specifically, the agnostic model is denoted by (X,Y = {0, 1},P,C), again under 0-1 loss. An
element PX,C∗ of P corresponds to a (PX, C

∗) pair, such that PX,C∗ is the joint probability
distribution of (X, Y) where X has probability distribution PX and Y = 1{X∈C∗}⊕W, where
W is independent of X with the Bernoulli(η) probability distribution, and “⊕” denotes XOR
(i.e. modulo 2) addition. In words, the original label of an input X, 1{X∈C∗}, is toggled with
probability η to produce the label Y.

This model fits into the agnostic framework if it is interpreted appropriately, as follows.
Given the true concept is C∗ and an instance of X and W , we interpret 1{X∈C∗} as a nominal
or preliminary label, and Y = 1{X∈C∗}⊕W as the true label. Thus, as usual in this section,
the training data and test data are generated independently with the same joint distribution

55

of (X, Y). Assuming the true concept is C∗ and C is a given classifier, the loss for using C
to predict Y is one if and only if 1{X∈C} 6= Y. Therefore, the expected loss for truth PX,C∗

and classifier C satisfies the following:

LPX,C∗ (C) = PX,C∗(1{X∈C} 6= Y)

= PX(1{X∈C} 6= 1{X∈C∗} ⊕W)

= PX(W 6= 1{X∈C∗4C})

= (1− η)PX(C∗4C) + η(1− PX(C∗4C))

= η + (1− 2η)PX(C∗4C)

Thus, LPX,C∗ (C) is a (linear) increasing function of PX(C∗4C). Hence, to have LPX,C∗ (Ĉn)

close to its minimum possible value, we want Ĉn to make PX(C∗4Ĉn) as small as possible,

just as in the realizable case. In other words, we want to maximize the probability that Ĉn
correctly predicts the nominal label determined by C∗. So, in the end, we could view the
nominal label 1{X∈C∗} as the true label, and Y as a noisy version of the true label.

5.4. Empirical risk minimization

Having formulated the model-free learning problem, we must now turn to the question
of how to construct PAC learning algorithms (and the related question of when a hypothesis
class is PAC-learnable in the model-free setting).

We will first start with a heuristic argument and then make it rigorous. Suppose we
are faced with the learning problem specified by (X,Y,U,P,F, `). Given a training set
Zn = (Z1, . . . , Zn), where each Zi = (Xi, Yi) is independently drawn according to some
unknown P ∈ P, what should we do? The first thing to note is that, for any hypothesis
f ∈ F, we can approximate its risk LP (f) by the empirical risk

1

n

n∑

i=1

`(Yi, f(Xi)),(5.19)

whose expectation w.r.t. the distribution of Zn is clearly equal to LP (f). In fact, since ` is
bounded between 0 and 1, Hoeffding’s inequality tells us that∣∣∣∣∣

1

n

n∑

i=1

`(Yi, f(Xi))− LP (f)

∣∣∣∣∣ < ε with probability at least 1− 2e−2nε2 .

We can express these statements more succinctly if we define, for each f ∈ F, the function
`f : Z→ [0, 1] by

`f (z) ≡ `f (x, y) := `(y, f(x)).(5.20)

Then the empirical risk (5.19) is just the expectation of `f w.r.t. the empirical distribution
Pn:

Pn(`f) =
1

n

n∑

i=1

`(Yi, f(Xi)),

and, since LP (f) = EP [`(Y, f(X))] = P (`f), we will have

|Pn(`f)− P (`f)| < ε with probability at least 1− 2e−2nε2 .(5.21)

56

Now, given the data Zn we can compute the empirical risks Pn(`f) for every f in our
hypothesis class F. Since (5.21) holds for each f ∈ F individually, we may intuitively claim
that the empirical risk for each f is a sufficiently accurate estimator of the corresponding

true risk LP (f) ≡ P (`f). Thus, a reasonable learning strategy would be to find any f̂n ∈ F

that would minimize the empirical risk, i.e., take

f̂n = arg min
f∈F

Pn(`f) = arg min
f∈F

1

n

n∑

i=1

`(Yi, f(Xi)).(5.22)

The reason why we would expect something like (5.22) to work is as follows: if a given f ∗ is
a minimizer of LP (f) = P (`f) over F,

f ∗ = arg min
f∈F

P (`f),

then its empirical risk, Pn(`f∗), will be close to LP (f ∗) = P (`f∗) = L∗P (F) with high proba-

bility. Moreover, it makes sense to expect that, in some sense, f̂n defined in (5.22) would be
close to f ∗, resulting in something like

P (`f̂n) ≈ Pn(`f̂n) ≈ Pn(`f∗) ≈ P (`f∗)

with high probability.
Unfortunately, this is not true in general. However, as we will now see, it is true under

certain regularity conditions on the objects P, F, and `. In order to state these regularity
conditions precisely, let us define the induced loss function class

LF := {`f : f ∈ F} .
Each `f ∈ LF corresponds to the hypothesis f ∈ F via (5.20). Now, for any n ∈ N and any
ε > 0 let us define

q(n, ε) := sup
P∈P

P n

(
Zn ∈ Zn : sup

f∈F
|Pn(`f)− P (`f)| ≥ ε

)
.(5.23)

For a fixed P ∈ P, quantity supf∈F |Pn(`f)− P (`f)| is the worst-case deviation between
the empirical means Pn(`f) and their expectations P (`f) over the entire hypothesis class F.
Given P , we say that an i.i.d. sample Zn ∈ Zn is “bad” if there exists at least one f ∈ F, for
which

|Pn(`f)− P (`f)| ≥ ε.

Equivalently, a sample is bad if

sup
f∈F
|Pn(`f)− P (`f)| ≥ ε.

The quantity q(n, ε) then compensates for the fact that P is unknown by considering the
worst case over the entire class P. With this in mind, we make the following definition:

Definition 5.6. We say that the induced class LF has the uniform convergence of em-
pirical means (UCEM) property w.r.t. P if

lim
n→∞

q(n, ε) = 0

for every ε > 0.

57

Theorem 5.3. If the induced class LF has the UCEM property, then the empirical risk
minimization (ERM) algorithm of (5.22) is PAC.

Proof. Fix ε, δ > 0. We will now show that we can find a sufficiently large n(ε, δ), such
that rA(n, ε) ≤ δ for all n ≥ n(ε, δ), where rA(n, ε) is defined in (5.18).

Let f ∗ ∈ F minimize the true risk w.r.t. P , i.e., P (f ∗) = L∗P (F). For any n, we have

LP (f̂n)− L∗P = P
(
`f̂n
)
− P

(
f ∗
)

= P
(
`f̂n
)
− Pn

(
`f̂n
)

︸ ︷︷ ︸
T1

+Pn
(
`f̂n
)
− Pn

(
`f∗
)

︸ ︷︷ ︸
T2

+Pn
(
`f∗
)
− P

(
`f∗
)

︸ ︷︷ ︸
T3

,

where in the second line we have added and subtracted Pn
(
`f̂n
)

and Pn
(
`f∗
)
. We will now

analyze the behavior of the three terms, T1, T2, and T3. Since f̂n minimizes the empirical
risk Pn(`f) over all f ∈ F, we will have

T2 = Pn
(
`f̂n
)
− Pn

(
`f∗
)
≤ 0.

Next,
T1 = P

(
`f̂n
)
− Pn

(
`f̂n
)
≤ sup

f∈F
[Pn(`f)− P (`f)] ≤ sup

f∈F
|Pn(`f)− P (`f)| ,

and the same upper bound holds for T3. Hence,

LP (f̂n)− L∗P (F) ≤ 2 sup
f∈F
|Pn(`f)− P (`f)| .(5.24)

Now, since LF has the UCEM property, we can find some sufficiently large n0(ε, δ), such
that

q(n, ε/2) = sup
P∈P

P n

(
Zn ∈ Zn : sup

f∈F
|Pn(`f)− P (`f)| ≥ ε/2

)
≤ δ, ∀n ≥ n0(ε, δ).

From this it follows that, for all n ≥ n0(ε, δ), we will have

P n

(
Zn : sup

f∈F
|Pn(`f)− P (`f)| ≥ ε/2

)
≤ δ, ∀P ∈ P.

From (5.24), we see that

LP (f̂n) ≥ L∗P (F) + ε =⇒ sup
f∈F
|Pn(`f)− P (`f)| ≥ ε/2

for all n. However, for all n ≥ n0(ε, δ) the latter event will occur with probability at most
δ, no matter which P is in effect. Therefore, for all n ≥ n0(ε, δ) we will have

rA(n, ε) = sup
P∈P

P n
(
Zn : LP (f̂n) > L∗P (F) + ε

)

≤ sup
P∈P

P n

(
Zn : sup

f∈F
|Pn(`f)− P (`f)| ≥ ε/2

)

≡ q(n, ε/2)

≤ δ,

which is precisely what we wanted to show. Thus, rA(n, ε) → 0 as n → ∞ for every ε > 0,
which means that the ERM algorithm is PAC. �

58

This theorem shows that the UCEM property of the induced class LF is a sufficient
condition for the ERM algorithm to be PAC. Now the whole affair rests on us being able to
establish the UCEM property for various “interesting” and “useful” problem specifications.
This will be our concern in the chapters ahead. However, let us give you a hint of what to
expect. Let us start with the following result:

Proposition 5.1 (Finite hypothesis classes). Consider a learning problem (X,Y,U,P,F, `),
where the hypothesis class is finite: |F| <∞. Then the induced function class LF satisfies

q(n, ε) ≤ 2|F|e−2nε2 ,(5.25)

and therefore has the UCEM property.

Proof. By assumption, F = {f1, . . . , fM}, where M := |F| < ∞. Therefore, for any
P ∈ P,

P n

(
Zn ∈ Zn : sup

f∈F
|Pn(`f)− P (`f)| ≥ ε

)

= P n

(
M⋃

m=1

{Zn ∈ Zn : |Pn(`fm)− P (`fm)| ≥ ε}
)

≤
M∑

m=1

P n
(
Zn ∈ Zn : |Pn(`fm)− P (`fm)| ≥ ε

)
,

by the union bound. Since the loss function ` takes values in [0, 1], each of the terms in the
sum above can be estimated using the Hoeffding bound:

P n
(
Zn ∈ Zn : |Pn(`fm)− P (`fm)| ≥ ε

)
≤ 2e−2nε2 .

Combining these estimates and taking the supremum over P ∈ P, we get (5.25). �

As we will see shortly, in many cases, even if the hypothesis class F is infinite, we will be
able to show that the induced class LF is so well-behaved that the bound

EPn

[
sup
f∈F
|Pn(`f)− P (`f)|

]
≤ CF,`√

n
(5.26)

holds for every P , where CF,` > 0 is some constant that depends only on the characteristics
of the hypothesis class F and the loss function `. Since `f is bounded between 0 and 1, the
function

g(Zn) := sup
f∈F
|Pn(`f)− P (`f)|

has bounded differences with constants c1 = . . . = cn = 1/n. McDiarmid’s inequality then
tells us that, for any t > 0,

P n
(
g(Zn)− Eg(Zn) ≥ t

)
≤ e−2nt2 .(5.27)

Let

n0(ε, δ) := max

{
4C2

F,`

ε2
,

2

ε2
log

(
1

δ

)}
+ 1.(5.28)

59

Then for any n ≥ n0(ε, δ)

P n
(
g(Zn) ≥ ε

)
= P n

(
g(Zn)− Eg(Zn) ≥ ε− Eg(Zn)

)

≤ P n

(
g(Zn)− Eg(Zn) ≥ ε− CF,`√

n

)
because of (5.26)

≤ P n
(
g(Zn)− Eg(Zn) ≥ ε

2

)
because n >

4C2
F,`

ε2

≤ e−nε
2/2 using (5.27) with t = ε/2

< δ because n >
2

ε2
log

(
1

δ

)

for any probability distribution P over Z = X× Y. Thus, we have derived a very important
fact: If the induced loss class LF satisfies (5.26), then (a) it has the UCEM property, and
consequently is model-free learnable using the ERM algorithm, and (b) the sample complex-
ity is quadratic in 1/ε and logarithmic in 1/δ. Our next order of business, taken up in the
next two chapters, will be to derive sufficient conditions on F and ` for something like (5.26)
to hold.

5.5. The mismatched minimization lemma

Since it arises repeatedly, we isolate an idea used in the proof of Theorem 5.3 so we can
easily refer to it later. Suppose we’d like to find a minimizer of a function G defined on

some domain U, but only an approximation, Ĝ, of G is available. Then the following lemma

implies a minimizer of Ĝ nearly minimizes G as well, if Ĝ is uniformly close to G.

Lemma 5.1. (Mismatched minimization lemma) Suppose that Ĝ is an ε uniform ap-

proximation of G for some ε > 0, meaning that |G(u)− Ĝ(u)| ≤ ε for all u ∈ U.

(a) (Single version) For any û ∈ U, G(û) ≤ Ĝ(û) + ε.

(b) (Double version) Suppose that u∗ is a minimizer of Ĝ, meaning that u∗ ∈ U and

Ĝ(u∗) ≤ Ĝ(u) for all u ∈ U. Then G(u∗) ≤ infu∈UG(u) + 2ε.

Proof. Part (a) is immediate from the assumption |G(u)− Ĝ(u)| ≤ ε for all u ∈ U. For

any u ∈ U, G(u) ≥ Ĝ(u)−ε ≥ Ĝ(u∗)−ε ≥ G(u∗)−2ε. Therefore, infu∈UG(u) ≥ G(u∗)−2ε,
which is equivalent to part (b). The proof of part (b) is illustrated in Figure 4. �

Lemma 5.1 implies (5.24) as follows. Let P be fixed. The expected loss as a function of
the predictor, f 7→ P (`f), is approximated by the empirical expected loss as a function of
the predictor, f 7→ Pn(`f). The bound |P (`f) − Pn(`f)| ≤ ε holds uniformly over f ∈ F for
ε = supf∈F |P (`f)− Pn(`f)|. So (5.24) is an instance of the double version of Lemma 5.1.

60

G

u*

ε

*G(u)

infG *G(u)−2ε

G

Figure 4. Illustration of the double version of the mismatched minimization lemma

61

CHAPTER 6

Empirical Risk Minimization: Abstract risk bounds and
Rademacher averages

In the last chapter, we have left off with a theorem that gave a sufficient condition for
the Empirical Risk Minimization (ERM) algorithm

f̂n = arg min
f∈F

Pn(`f)(6.1)

= arg min
f∈F

1

n

n∑

i=1

`(Yi, f(Xi))(6.2)

to be PAC for a given learning problem with hypothesis space F and loss function `. This
condition pertained to the behavior of the uniform deviation of empirical means from true
means over the induced class LF = {`f : f ∈ F}. Specifically, we proved that ERM is a PAC
algorithm if

lim
n→∞

sup
P∈P

P n

(
sup
f∈F
|Pn(`f)− P (`f)| ≥ ε

)
= 0, ∀ε > 0,(6.3)

where P is the class of probability distributions generating the training data.

6.1. An abstract framework for ERM

To study ERM in a general framework, we will adopt a simplified notation often used in
the literature. We have a space Z and a class F of functions f : Z→ [0, 1]. Let P(Z) denote
the space of all probability distributions on Z. For each sample size n, the training data are
in the form of an n-tuple Zn = (Z1, . . . , Zn) of Z-valued random variables drawn according
to some unknown P ∈ P. For each P , we can compute the expected risk of any f ∈ F by

P (f) = EPf(Z) =

∫

Z

f(z)P (dz).(6.4)

The minimum risk over F is

L∗P (F) := inf
f∈F

P (f).(6.5)

A learning algorithm is a sequence A = {An}n≥1 of mappings An : Zn → F, and the objective
is to ensure that

P (f̂n) ≈ L∗P (F) eventually with high probability.(6.6)

62

The ERM algorithm works by taking

f̂n = arg min
f∈F

Pn(f)(6.7)

= arg min
f∈F

1

n

n∑

i=1

f(Zi).(6.8)

This way of writing down our problem hides most of the ingredients that were specified in
Haussler’s framework of model-free learning, so it is important to keep in mind that Z is an
input/output pair (X, Y) and the functions f ∈ F are really the induced losses for some loss
function ` and hypothesis class G. That is, they are functions of the form `g(x, y) = `(g(x), y),
or, in the case if classification for a set of concepts C and 0 − 1 loss, functions of the form
`C(x, y) = 1{1{x∈C} 6=y}. However, recalling our discussion of unsupervised learning problems
in Chapter 1, we do not insist on splitting Z into input X and output Y , nor do we need to
imagine any particular structure for f .

We have seen (Theorem 5.3) that a uniform bound on the deviation empirical means in F

is a suffiicent condition for the consistency of ERM. In order to have a clean way of keeping
track of all the relevant quantities, let us introduce some additional notation. First of all,
we need a way of comparing the behavior of any two probability distributions P and P ′ with
respect to the class F. A convenient way of doing this is through the F-seminorm

‖P − P ′‖F := sup
f∈F
|P (f)− P ′(f)|(6.9)

= sup
f∈F
|EPf − EP ′f |(6.10)

= sup
f∈F

∣∣∣∣
∫

Z

f(z)P (dz)−
∫

Z

f(z)P ′(dz)

∣∣∣∣ .(6.11)

We say that ‖ · ‖F is a seminorm because it has all the properties of a norm (in particular, it
satisfies the triangle inequality), but it may happen that ‖P − P ′‖F = 0 for P 6= P ′. Next,
given a random sample Zn we define the uniform deviation

∆n(Zn) := ‖Pn − P‖F ≡ sup
f∈F
|Pn(f)− P (f)| .(6.12)

To keep things simple, we do not indicate the underlying distribution P or the function
class F explicitly. We will do this from now on, unless some confusion is possible, in which
case we will use appropriate indices. Thus, we will write L(f), L∗(F), etc., and you should
always keep in mind that all expectations are computed w.r.t. the (unknown) data-generating
distribution P ∈ P(Z). In the same spirit, we will denote by Pn(f) the empirical risk of f
on the sample Zn:

Pn(f) =
1

n

n∑

i=1

f(Zi).(6.13)

The following result is key to understanding the role of the uniform deviations ∆n(Zn) in
controlling the performance of the ERM algorithm.

63

Proposition 6.1. The generalization loss for a learning algorithm satisfies:

P (f̂n) ≤ L∗(F) + 2∆n(Zn) (if algorithm is ERM)(6.14)

P (f̂n) ≤ Pn(f̂n) + ∆n(Zn) (for any algorithm).(6.15)

Proof. The proposition follows immediately from the mismatched minimization lemma,
Lemma 5.1, with (6.14) corresponding to the double version of Lemma 5.1 and (6.15) cor-
responding to the single version. Let us give another proof in order to get comfortable with
the abstract notation of this section. Let f ∗ be any minimizer of P (f) over F. Then

P (f̂n)− L∗(F) = P (f̂n)− P (f ∗)

= P (f̂n)− Pn(f̂n) + Pn(f̂n)− Pn(f ∗) + Pn(f ∗)− P (f ∗),

where Pn(f̂n)− Pn(f ∗) ≤ 0 by definition of ERM,

P (f̂n)− Pn(f̂n) ≤ sup
f∈F

[Pn(f)− P (f)] ≤ ‖Pn − P‖F = ∆n(Zn),

and the same holds for Pn(f ∗)− P (f ∗). This proves (6.14), while (6.15) is immediate from
(6.12). �

Remark 6.1. The bounds (6.14) and (6.15) are both useful in practice, and they have
different meanings. The bound (6.14) says that, if the uniform deviation ∆n(Zn) is small,
then the expected risk of the ERM hypothesis will be close to the minimum risk L∗(F). That
is nice to know even though L∗(F) is typically not computable from the data. The bound

(6.15) says that the empirical estimate Pn(f̂n) is an accurate estimate of the generalization

performance of f̂n, and, of course, Pn(f̂n) is computable from the data. Both bounds suggest
that the success of ERM depends on how small the uniform deviation ∆n(Zn) can be. Thus,
we need to develop tools for analyzing the behavior of ∆n(Zn).

6.2. Bounding the uniform deviation: Rademacher averages

Motivated by Proposition 6.1, we would like to have conditions implying ∆n(Zn) is small
with high probability. That can be achieved by first bounding E[∆n(Zn)] and then showing
that the distribution of ∆n(Zn) is concentrated about its mean using McDiarmid’s inequality.
The following definition will play an important role for bounding E[∆n(Zn)].

Definition 6.1. Let A ⊂ Rn with A bounded. The Rademacher average of A, denoted
by Rn(A), is defined by

Rn(A) = E

[
sup
a∈A

∣∣∣∣
1

n

n∑

i=1

εiai

∣∣∣∣

]
,

where ε1, . . . , εn are independent Rademacher (i.e., ±1 with equal probability) random vari-
ables.

To motivate the use of Rademacher averages, suppose that P and F are such that if
Zn = (Z1, . . . , Zn) is distributed according to P n, then

(6.16)
1

n

n∑

i=1

f(Zi) ≈ P (f) for all f ∈ F, with high probability.

64

Condition (6.16) has to do with P,F, and n only; it doesn’t matter which random vector Zn

is used, as long as it has distribution P n. So if Zn+1, . . . , Z2n are n more random variables
that are independent, each with distribution P, then

(6.17)
1

n

2n∑

i=n+1

f(Zi) ≈ P (f) for all f ∈ F, with high probability.

If (6.16), and hence (6.17), are true, then the left-hand side of (6.16) minus the left-hand
side of (6.17) is approximately zero, for all f ∈ F, with high probability. That can be written
as:

(6.18)
1

n

2n∑

i=1

εif(Zi) ≈ 0 for all f ∈ F, with high probability,

where ε1 = · · · = εn = 1 and εn+1 = · · · = ε2n = −1. Furthermore, if Z1, . . . , Z2n are
mutually independent with distribution P, and if π : [2n] → [2n] is a random permutation,
uniformly distributed over all (2n)! possibilities, and independent of Z2n, then

(6.19)
2n∑

i=1

εif(Zi)
d
=

2n∑

i=1

εif(Zπ(i)) =
2n∑

i=1

επ−1(i)f(Zi) =
2n∑

i=1

ε̃if(Zi),

where ε̃i = επ−1(i), so that ε̃ is uniformly distributed over all ±1 vectors of length 2n with
zero sum. The distribution of ε̃ is close to the distribution of a vector of n iid Rademacher
variables, if n is at least moderately large. To summarize, (6.16) implies that

(6.20)
1

2n

2n∑

i=1

ε̃if(Zi) ≈ 0 for all f ∈ F, with high probability.

It is reasonable to think the converse is true as well. If (6.20) is true, it means that the
lefthand sides of (6.16) and (6.17), which are independent of each other, are close to each
other with high probability. It seems that forces (6.16) and (6.17) to be true. That intuition
is behind the theorem given next.

Consider a class F of functions f : Z→ [0, 1] from our formulation of the ERM problem.
The key result is that E[∆n(Zn)] is controlled by the mean of the Rademacher averages of
the random sets

F(Zn) := {(f(Z1), . . . , f(Zn)) : f ∈ F} .(6.21)

A useful way to think about F(Zn) is as a projection of F onto the random sample Zn.

Theorem 6.1. Fix a space Z and let F be a class of functions f : Z → [0, 1]. Then for
any P ∈ P(Z)

E∆n(Zn) ≤ 2ERn(F(Zn)).(6.22)

Proof. The idea of the proof is to use a symmetrization argument due to Vapnik-
Chervonenkis, and focused on by Giné and Zinn [GZ84]. Fix P ∈ P throughout the proof.
By definition,

E [∆n(Zn)] = E

[
sup
f∈F

∣∣∣∣
1

n

n∑

i=1

f(Zi) − P (f)

∣∣∣∣

]
.

65

Note that the mapping

y 7→ E

[
sup
f∈F

∣∣∣∣
1

n

n∑

i=1

f(Zi) − y(f)

∣∣∣∣

]

is a convex mapping of y = (y(f) : f ∈ F) to R, because the absolute value function is
convex, the supremum of a set of convex functions is convex, and the expectation of a random
convex function is convex. Let Z

n
be an independent copy of Zn. For example, we could take

Zi = Zn+i where Z1, . . . , Z2n are distributed as above. Note that E
[

1
n

∑n
i=1 f(Zi)

]
= P (f).

So by Jensen’s inequality,

E [∆n(Zn)] ≤ E

[
sup
f∈F

∣∣∣∣
1

n

n∑

i=1

f(Zi)− f(Zi)

∣∣∣∣

]
.

For each i, (f(Zi), f(Zi))
d
= (f(Zi), f(Zi)), so that f(Zi)−f(Zi)

d
= f(Zi)−f(Zi). That is, the

distribution of f(Zi)− f(Zi) is symmetric. Thus, if ε1, . . . , εn are independent Rademacher

random variables, (f(Zi)− f(Zi))1≤i≤n
d
= (εi(f(Zi)− f(Zi)))1≤i≤n. Thus,

E [∆n(Zn)] ≤ E

[
sup
f∈F

∣∣∣∣
1

n

n∑

i=1

εi(f(Zi)− f(Zi))

∣∣∣∣

]

≤ E

[
sup
f∈F

∣∣∣∣
1

n

n∑

i=1

εif(Zi)

∣∣∣∣

]
+ E

[
sup
f∈F

∣∣∣∣
1

n

n∑

i=1

εif(Zi))

∣∣∣∣

]
= 2E [Rn(F(Zn))] .

�

The above theorem and Proposition 6.1 imply the following key result on ERM.

Corollary 6.1. For any P ∈ P(Z) and any n, a learning algorithms f̂n satisfies the
bound

P (f̂n) ≤ L∗(F) + 4 ERn(F(Zn)) +

√
2 log

(
1
δ

)

n
(if ERM is used)(6.23)

P (f̂n) ≤ Pn(f̂n) + 2 ERn(F(Zn)) +

√
log
(

1
δ

)

2n
(for any algorithm)(6.24)

with probability at least 1− δ.

Proof. By the first bound in Proposition 6.1,

P (f̂n) ≤ L∗(F) + 2∆n(Zn) = L∗(F) + 2E[∆n(Zn)] + (2∆n(Zn)− 2E[∆n(Zn)])

with probability one, and by Theorem 6.1, E[2∆n(Zn)] ≤ 4E[Rn(F(Zn))]. It thus suffices to

prove the probability that 2∆n(Zn) exceeds its mean by more than ε =

√
2 log(1

δ)
n

is less than
or equal to δ. Examining the definition (6.12) of 4(Zn) shows that, as a function of Zn, it
has the bounded difference property for constants ci = 1

n
for all i. Thus, by McDiarmid’s

66

inequality,

P{2∆n ≥ 2E [∆n] + ε} = P {∆n ≥ E [∆n] + ε/2}

≤ exp

(
− 2(ε/2)2

n(1/n)2

)
= exp

(
−nε2/2

)
= δ,

as desired. �

6.3. Structural results for Rademacher averages

The results developed above highlight the fundamental role played by Rademacher av-
erages in bounding the generalization error of the ERM algorithm. In order to use these
bounds, we need to get a better handle on the behavior of Rademacher averages. Recall that
the Rademacher average of a bounded set A ⊂ Rn is defined as

Rn(A) :=
1

n
Eεn

[
sup
a∈A

∣∣∣∣∣
n∑

i=1

εiai

∣∣∣∣∣

]

(see Def. 6.1). It will also be convenient to introduce an alternative version, without the
absolute value:

R◦n(A) :=
1

n
Eεn

[
sup
a∈A

n∑

i=1

εiai

]
.

Both variants are used in the literature, and each has its pros and cons.
There is a natural geometrical interpretation of Rademacher averages. Note that if we let

ε denote the vector of Rademacher random variables, ε = (ε1, . . . , εn)∗, then 1√
n
ε is a random

unit length vector, and Rn(A) = 1√
n
E
[
supa∈A∪−A〈a, 1√

n
ε〉
]
. Note that supa∈A∪−A〈a, 1√

n
ε〉 is

the half-width of the smallest slab normal to ε that contains A∪−A. Thus, Rn(A)
√
n is the

average, over ε, of such half-widths. For a similar geometrical interpretation for R◦, use the

fact that ε and −ε have the same distribution to obtain R◦n(A) = 1√
n
E
[
supa∈A〈a, 1√

n
ε〉
]

=

− 1√
n
E
[
infa∈A〈a, 1√

n
ε〉
]
. Therefore,

R◦n(A) =
1

2
√
n

E

[
sup
a∈A
〈a, 1√

n
ε〉 − inf

a∈A
〈a, 1√

n
ε〉
]

Thus, R◦n(A)
√
n is the average half-width of the smallest slab containing A, such that the

slab is normal to ε, averaged over the possible values of ε.1 See the illustration in Figure 6.3.

First, we collect some results that describe how Rademacher averages behave with respect
to several operations on sets. Let A,B be two bounded subsets of Rn. In addition to the
union A ∪B and the intersection A ∩B, we can also define:

• the translate of A by v ∈ Rn,

A + v := {a+ v : a ∈ A} ;

1Similar measures for the size of a set A have been studied, corresponding to taking ε to be uniformly
distributed over the unit sphere in Rn or taking ε to be a vector of independent standard normal random
variables.

67

n

A

−A

A

(a) (b)

ε ε

r
o

2 n

2r

Figure 1. Illustration of the geometrical interpretation of Rademacher aver-
ages. R◦n(A) and Rn(A), respectively, are the averages of r◦ and r shown, for
ε uniformly distributed over the corners of the hypercube [−1, 1]n.

• the scaling of A by c ∈ R,

cA := {ca : a ∈ A} ;

• the Minkowski sum of A and B:

A + B := {a+ b : a ∈ A, b ∈ B} ;

• the convex hull and the absolute convex hull of A:

conv(A) =

{
N∑

m=1

cma
(m) : N ≥ 1, cm ≥ 0 for m ∈ [N], c1 + . . .+ cN = 1,

a(1), . . . , a(N) ∈ A

}

absconv(A) =

{
N∑

m=1

cma
(m) : N ≥ 1, |c1|+ . . .+ |cN | = 1,

a(1), . . . , a(N) ∈ A

}
= conv(A ∪ (−A))

Some basic properties of Rademacher averages are as follows:

(1) R◦n(A) ≤ Rn(A) = R◦n(A ∪ −A)
(2) R◦n(A) = Rn(A) if A = −A
(3) R◦n(A + v) = R◦n(A) for any v ∈ Rn,
(4) Rn(A ∪B) ≤ Rn(A) +Rn(B)
(5) R◦n(A + B) = R◦n(A) +R◦n(B)
(6) Rn(cA) = |c|Rn(A)
(7) Rn(A) = Rn(conv(A))
(8) Rn(A) = Rn(absconv(A))

68

These are all straightforward to prove. In particular, Rn(A) = Rn(conv(A)) follows from the
geometrical interpretation above, because a slab in Rd contains A if and only if it contains
conv(A). Also, since absconv(A) = conv(A ∪ (−A)), it follows that

Rn(absconv(A)) = Rn(conv(A ∪ (−A))) = Rn(A ∪ (−A)) = Rn(A).

The properties listed above show what happens to Rademacher averages when we form
combinations of sets. This will be useful to us later, when we talk about hypothesis classes
made up of simpler classes by means of operations like set-theoretic unions, intersections,
complements or differences, logical connectives, or convex and linear combinations.

The next result, often referred to as the finite class lemma, is based on the use of sub-
gaussian random variables – see Section 2.5.

Lemma 6.1 (Finite class lemma). If A = {a(1), . . . , a(N)} ⊂ Rn is a finite set with
‖a(j)‖ ≤ L for all j = 1, . . . , N and N ≥ 2, then

Rn(A) ≤ 2L
√

logN

n
.(6.25)

Proof. Let εn be a vector of n i.i.d. Rademacher variables, and for every k ∈ [N] let

Yk :=
1

n

n∑

i=1

εia
(k)
i .

A Rademacher random variable εi is mean zero and |εi| ≤ 1, so it is subgaussian with scale

parameter one by Hoeffding’s lemma, Lemma 2.1. Therefore, εia
(k)
i is subgaussian with scale

parameter |a(k)
i |. A sum of independent subgaussian random variables is also subgaussian,

with the scale parameter of the sum given by the same formula as the standard deviation of

the sum. Specifically, Yk is subgaussian with scale paremeter ν given by ν2 = 1
n2

∑
i(a

(k)
i)2 =

‖a(k)‖2/n2 ≤ (L/n)2. Since |x| = max{x,−x}, we can write

Rn(A) = E [max {Y1,−Y1, . . . , YN ,−YN}] .(6.26)

The 2N random variables ±Y1, . . . ,±YN are ν-subgaussian with ν = L/n. Therefore, Lemma
2.3 implies

Rn(A) ≤ L
√

2 log(2N)

n
≤ 2L

√
logN

n
,

where the last step uses the fact that log(2N) ≤ 2 logN for N ≥ 2. �

Next we discuss the so-called contraction principle for Rademacher averages that will
be used in later chapters. Suppose n ≥ 1, and for 1 ≤ i ≤ n let ϕi : R → R. Let
ϕ ◦ v = (ϕ1(v1), . . . , ϕn(vn)). Given a subset A of Rn, let ϕ ◦ A = {ϕ ◦ v : v ∈ A}. Recall
that R◦n(A) is the variation of Rn(A) obtained by omitting the absolute value symbols in the
definition of Rn(A).

Proposition 6.2 (Contraction principles for Rademacher averages). If A is a bounded
subset of Rn and for i ∈ [n], ϕi : R → R is an M-Lipschitz continuous function, then
R◦n(ϕ ◦A) ≤MR◦n(A). Furthermore, if ϕi(0) = 0 for all i (i.e., ϕ(0) = 0) then Rn(ϕ ◦A) ≤
2MRn(A).

69

Proof. We first prove the contraction property for Ro
n. By scaling, without loss of

generality we can assume that M = 1. Since the functions ϕ1, . . . , ϕn can be introduced
one at a time, it suffices to consider the case that all the functions ϕi are equal to the
identity function, except ϕ1. That is, it suffices to show that R◦n(A) = R◦n(A1), where
A1 = {(ϕ(a1), a2, . . . , an) : a ∈ A} and ϕ : R→ R is Lipschitz-continuous with constant one.
Averaging over the values of ε1, we get

R◦n(A) =
1

2n
E

{
sup
a∈A

(
a1 +

n∑

i=2

εiai

)
+ sup

a′∈A

(
−a′1 +

n∑

i=2

εia
′
i

)}

=
1

2n
E

{
sup
a,a′∈A

(
a1 − a′1 +

n∑

i=2

εiai +
n∑

i=2

εia
′
i

)}

=
1

2n
E sup
a,a′∈A

(
|a1 − a′1|+

n∑

i=2

εiai +
n∑

i=2

εia
′
i

)
,(6.27)

where the last equality comes from the fact that a and a′ can be swapped. Applying the
same equations with A replaced by A1 yields:

R◦n(A1) =
1

2n
E sup
a,a′∈A

(
|φ(a1)− φ(a′1)|+

n∑

i=2

εiai +
n∑

i=2

εia
′
i

)
.(6.28)

Comparison of (6.27) and (6.28) and using the assumption |ϕ(a1)−ϕ(a′1)| ≤ |a1− a′1| yields
that R◦n(A1) ≤ R◦n(A). This completes the proof of R◦n(ϕ ◦A) ≤MR◦n(A).

We shall show how the contraction principle for Rn follows from the contraction principle
for Ro

n. Let 0 denote the zero vector in Rn. We shall also use the fact that R◦n(A ∪ B) ≤
R◦n(A) +R◦n(B) if 0 ∈ A and 0 ∈ B. We find

Rn(ϕ ◦A) = R◦n((ϕ ◦A) ∪ (−ϕ ◦A) ∪ {0})
≤ R◦n((ϕ ◦A) ∪ {0}) +R◦n((−ϕ ◦A) ∪ {0})
= R◦n(ϕ ◦ (A ∪ {0})) +R◦n(−ϕ ◦ (A ∪ {0}))
= 2R◦n(ϕ ◦ (A ∪ {0}))
≤ 2MR◦n(A ∪ {0}) ≤ 2MRn(A).

�

6.4. Spoiler alert: A peek into the next two chapters

We will start exploring the implications of the finite class lemma, Lemma 6.1, more fully
in the next two chapters, but we can give a brief preview here. Consider a learning problem
of the type described in Section 6.1 in the special case when F consists of binary-valued
functions on Z, i.e., F(Z) = {f(z) : z ∈ Z, f ∈ F} ⊆ {0, 1} . From Theorem 6.1, we know
that

E∆n(Zn) ≤ 2ERn(F(Zn)),(6.29)

where

F(Zn) := {(f(Z1), . . . , f(Zn)) : f ∈ F} .(6.30)

70

Note that because each f can take values 0 or 1, F(Zn) ⊆ {0, 1}n. Moreover, since for any
Zn ∈ Zn and any f ∈ F we have

√√√√
n∑

i=1

|f(Zi)|2 ≤
√
n,(6.31)

the set F(Zn) for a fixed Zn satisfies the conditions of the finite class lemma with N =
|F(Zn)| ≤ 2n and L =

√
n. Hence,

Rn(F(Zn)) ≤ 2

√
log |F(Zn)|

n
.(6.32)

In general, since log |F(Zn)| ≤ n, the bound just says that Rn(F(Zn)) ≤ 2, which is not
that useful. However, as we will see in the next two chapters, for a broad range of binary
function classes F it will not be possible to pick out every single element in {0, 1}n by taking
the random “slices” F(Zn), provided n is sufficiently large. To make these notions precise,
let us define the quantity

Sn(F) := sup
zn∈Zn

|F(zn)|,(6.33)

which is called the nth shatter coefficient of F. Then we have the bound

Rn(F(Zn)) ≤ 2

√
log Sn(F)

n
.(6.34)

Next, let

V (F) := max {n ∈ N : Sn(F) = 2n} .(6.35)

This number is the famous Vapnik–Chervonenkis (or VC) dimension of F, which has origi-
nated in their work [VC71]. It is clear that if Sn(F) < 2n for some n, then Sm(F) < 2m for
all m > n. Hence, V (F) is always well-defined (though it may be infinite). When it is finite,
we say that F is a VC class. What this means is that, for n large enough, a certain structure
emerges in the sets F(zn), which prevents us from being able to form any combination of
binary labels by sweeping through the entire F. A fundamental result, which was indepen-
dently derived by Sauer [Sau72] and Shelah [She72] in different contexts (combinatorics
and mathematical logic respectively) and also appeared in a weaker form in the original work
of Vapnik and Chervonenkis [VC71], says the following:

Lemma 6.2 (Sauer–Shelah). If F is a VC class, i.e., V (F) <∞, then

Sn(F) ≤
V (F)∑

i=0

(
n

i

)
≤ (n+ 1)V (F).(6.36)

Thus, the finite class lemma and the Sauer-Shelah lemma combine to give the following
important result, which we will revisit in the next two chapters:

Theorem 6.2. If F is a VC class of binary functions, then, with probability one,

Rn(F(Zn)) ≤ 2

√
V (F) log(n+ 1)

n
.(6.37)

71

Of course, the right hand side of (6.37) is therefore also an upper bound on ERn(F(Zn)),
and such bound can be combined with Corollary 6.1. Consequently, for a VC class F, the
risk of ERM computed on an i.i.d. sample of size n from an arbitrary distribution P ∈ P(Z)
is bounded by

P (f̂n) ≤ L∗(F) + 8

√
V (F) log(n+ 1)

n
+

√
2 log

(
1
δ

)

n
(6.38)

with probability at least 1− δ. In fact, using a much more refined technique called chaining
originating in the work of Dudley [Dud78], it is possible to remove the logarithm in (6.37)
to obtain the bound

Rn(F(Zn)) ≤ C

√
V (F)

n
,(6.39)

where C > 0 is some universal constant independent of n and F. We will not cover chaining
in this class, but we will use the above formula.

To summarize, Figure 2 shows a diagram of the proof that if the set of classifiers has low
VC dimension, then the ERM algorithm is PAC.

E[Rn(F(Zn))] is small
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E[�(Zn)] is small
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�(Zn) � E[�(Zn)] is probably small
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�(Zn) is probably small
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Algorithm is PAC
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

finite class lemma & Sauer-Shelah lemma
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Rn(F(Zn)) is small with probability one
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

symmetrization argument
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

mismatched minimization lemma
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

McDiarmid inequality
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

VC dimension V (F) is small (a hypothesis)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2. Path for proving Theorem 8.1, which, roughly speaking, states
that the ERM algorithm is PAC for a model free learning problem (X,F,P)
such that the functions in F are binary valued, if the VC dimension of F is
finite.

72

CHAPTER 7

Vapnik–Chervonenkis classes

A key result on the ERM algorithm, proved in the previous lecture, was that

P (f̂n) ≤ L∗(F) + 4ERn(F(Zn)) +

√
2 log(1/δ)

n

with probability at least 1 − δ. The quantity Rn(F(Zn)) appearing on the right-hand side
of the above bound is the Rademacher average of the random set

F(Zn) = {(f(Z1), . . . , f(Zn)) : f ∈ F} ,
often referred to as the projection of F onto the sample Zn. From this we see that a sufficient
condition for the ERM algorithm to produce near-optimal hypotheses with high probability

is that the expected Rademacher average ERn(F(Zn)) = Õ(1/
√
n), where the Õ(·) notation

indicates that the bound holds up to polylogarithmic factors in n, i.e., there exists some
positive polynomial function p(·) such that

ERn(F(Zn)) ≤ O

(√
p(log n)

n

)
.

Hence, a lot of effort in statistical learning theory is devoted to obtaining tight bounds on
ERn(F(Zn)).

One way to guarantee an Õ(1/
√
n) bound on ERn is if the effective size of the random

set F(Zn) is finite and grows polynomially with n. Then the finite class lemma will tell us
that

Rn(F(Zn)) = O

(√
log n

n

)
.

In general, a reasonable notion of “effective size” is captured by various covering numbers
(see, e.g., the lecture notes by Mendelson [Men03] or the recent monograph by Talagrand
[Tal14] for detailed expositions of the relevant theory). In this chapter, we will look at
a simple combinatorial notion of effective size for classes of binary-valued functions. This
particular notion has originated with the work of Vapnik and Chervonenkis [VC71], and
was historically the first such notion to be introduced into statistical learning theory. It is
now known as the Vapnik–Chervonenkis (or VC) dimension.

7.1. Vapnik–Chervonenkis dimension: definition

Definition 7.1. Let C be a class of (measurable) subsets of some space Z. We say that
a finite set S = {z1, . . . , zn} ⊂ Z is shattered by C if for every subset S ′ ⊆ S there exists
some C ∈ C such that S ′ = S ∩ C.

73

In other words, S = {z1, . . . , zn} is shattered by C if, for any binary n-tuple b = (b1, . . . , bn) ∈
{0, 1}n, there exists some C ∈ C such that

(
1{z1∈C}, . . . ,1{zn∈C}

)
= b

or, equivalently, if
{(

1{z1∈C}, . . . ,1{zn∈C}
)

: C ∈ C
}

= {0, 1}n,
where we consider any two C1, C2 ∈ C as equivalent if 1{zi∈C1} = 1{zi∈C2} for all 1 ≤ i ≤ n.

Definition 7.2. The Vapnik–Chervonenkis dimension (or the VC dimension) of C is

V (C) := sup
{
|S| : S is shattered by C

}
.

If V (C) <∞, we say that C is a VC class (of sets).

We can express the VC dimension in terms of shatter coefficients of C: Let

Sn(C) := sup
S⊂Z,|S|=n

|{S ∩ C : C ∈ C}|

denote the nth shatter coefficient of C, where for each fixed S we consider any two C1, C2 ∈ C

as equivalent if S ∩ C1 = S ∩ C2. Then C shatters a set S ⊂ Z with |S| = n if and only if
|{S ∩ C : C ∈ C}| = 2n. Therefore, V (C) is also given by:

V (C) = sup
{
n ∈ N : Sn(C) = 2n

}
.

The VC dimension V (C) may be infinite, but it is always well-defined. The following lemma

shows that V (C) = inf
{
n ∈ N : Sn+1(C) < 2n+1

}
.

Lemma 7.1. If Sn(C) < 2n, then Sm(C) < 2m for all m > n.

Proof. It suffices to prove the contrapositive, namely, that if m > n and Sm(C) = 2m,
then Sn(C) = 2n. So suppose m > n and Sm(C) = 2m. By the assumption Sm(C) = 2m, there
exists S = {z1, . . . , zm} ⊂ Z, such that for every binary n-tuple b = (b1, . . . , bn) we can find
some C ∈ C satisfying

(
1{z1∈C}, . . . ,1{zn∈C},1{zn+1∈C}, . . . ,1{zm∈C}

)
= (b1, . . . , bn, 0, . . . , 0).(7.1)

From (7.1) it immediately follows that
(
1{z1∈C}, . . . ,1{zn∈C}

)
= (b1, . . . , bn).(7.2)

Since b = (b1, . . . , bn) was arbitrary, we see from (7.2) that Sn(C) = 2n. �

There is a one-to-one correspondence between binary-valued functions f : Z → {0, 1} and
subsets of Z:

∀f : Z→ {0, 1} let Cf := {z : f(z) = 1}
∀C ⊆ Z let fC := 1{C}.

Thus, we can extend the concept of shattering, as well as the definition of the VC dimension,
to any class F of functions f : Z→ {0, 1}:

74

Definition 7.3. Let F be a class of functions f : Z → {0, 1}, or let F be a class of
functions f : Z→ {−1, 1}. We say that a finite set S = {z1, . . . , zn} ⊂ Z is shattered by F if
it is shattered by the class

CF := {Cf : f ∈ F} ,
where Cf := {z ∈ Z : f(z) = 1}. The nth shatter coefficient of F is Sn(F) = Sn(CF), and the
VC dimension of F is defined as V (F) = V (CF).

In light of these definitions, we can equivalently speak of the VC dimension of a class of sets
or a class of binary-valued functions.

7.2. Examples of Vapnik–Chervonenkis classes

7.2.1. Semi-infinite intervals. Let Z = R and take C to be the class of all intervals of
the form (−∞, t] as t varies over R. We will prove that V (C) = 1. In view of Lemma 7.1, it
suffices to show that (1) any one-point set S = {a} is shattered by C, and (2) no two-point
set S = {a, b} is shattered by C.

Given S = {a}, choose any t1 < a and t2 > a. Then (−∞, t1]∩S = ∅ and (−∞, t2]∩S =
S. Thus, S is shattered by C. This holds for every one-point set S, and therefore we have
proved (1). To prove (2), let S = {a, b} and suppose, without loss of generality, that a < b.
Then there exists no t ∈ R such that (−∞, t] ∩ S = {b}. This follows from the fact that if
b ∈ (−∞, t] ∩ S, then t ≥ b. Since b > a, we must have t > a, so that a ∈ (−∞, t] ∩ S as
well. Since a and b are arbitrary, we see that no two-point subset of R can be shattered by
C.

7.2.2. Closed intervals. Again, let Z = R and take C to be the class of all intervals of
the form [s, t] for all s, t ∈ R. Then V (C) = 2. To see this, we will show that (1) any two
point set S = {a, b} can be shattered by C and that (2) no three-point set S = {a, b, c} can
be shattered by C.

For (1), let S = {a, b} and suppose, without loss of generality, that a < b. Choose four
points t1, t2, t3, t4 ∈ R such that t1 < t2 < a < t3 < b < t4. There are four subsets of S: ∅,
{a}, {b}, and {a, b} = S. Then

[t1, t2] ∩ S = ∅, [t2, t3] ∩ S = {a}, [t3, t4] ∩ S = {b}, [t1, t4] ∩ S = S.

Hence, S is shattered by C. This holds for every two-point set in R, which proves (1).
To prove (2), let S = {a, b, c} be an arbitrary three-point set with a < b < c. Then the
intersection of any [t1, t2] ∈ C with S containing a and c must necessarily contain b as well.
This shows that no three-point set can be shattered by C, so by Lemma 7.1 we conclude that
V (C) = 2.

7.2.3. Closed halfspaces. Let Z = R2, and let C consist of all closed halfspaces, i.e.,
sets of the form

{z = (z1, z2) ∈ R2 : w1z1 + w2z2 ≥ b}
for all choices of w1, w2, b ∈ R such that (w1, w2) 6= (0, 0). Then V (C) = 3.

To see that S3(C) = 23 = 8, it suffices to consider any set S = {z1, z2, z3} of three non-
collinear points. Then it is not hard to see that for any S ′ ⊆ S it is possible to choose a
closed halfspace C ∈ C that would contain S ′, but not S. To see that S4(C) < 24, we must
look at all four-point sets S = {z1, z2, z3, z4}. There are two cases to consider:

75

Figure 1. Impossibility of shattering an affinely independent four-point set
in R2 by closed halfspaces.

(1) One point in S lies in the convex hull of the other three. Without loss of generality,
let’s suppose that z1 ∈ conv(S ′) with S ′ = {z2, z3, z4}. Then there is no closed
halfspace C, such that C ∩ S = S ′. The reason for this is that every such halfspace
C is a convex set. Hence, if S ′ ⊂ C, then any point in conv(S ′) is contained in C
as well.

(2) No point in S is in the convex hull of the remaining points. This case, when S
is an affinely independent set, is shown in Figure 1. Let us partition S into two
disjoint subsets, S1 and S2, each consisting of “opposite” points. In the figure, S1 =
{z1, z3} and S2 = {z2, z4}. Then it is easy to see that there is no halfspace C whose
boundary could separate S1 from its complement S2. This is, in fact, the (in)famous
“XOR counterexample” of Minsky and Papert [MP69], which has demonstrated the
impossibility of universal concept learning by one-layer perceptrons.

Since any four-point set in R2 falls under one of these two cases, we have shown that no such
set can be shattered by C. Hence, V (C) = 3.

More generally, if Z = Rd and C is the class of all closed halfspaces
{
z ∈ Rd :

d∑

j=1

wjzj ≥ b

}

for all w = (w1, . . . , wd) ∈ Rd such that at least one of the wj’s is nonzero and all b ∈ R,
then V (C) = d+ 1 [WD81]; we will see a proof of this fact shortly.

7.2.4. Axis-parallel rectangles. Let Z = R2, and let C consist of all “axis-parallel”
rectangles, i.e., sets of the form C = [a1, b1]× [a2, b2] for all a1, b1, a2, b2 ∈ R. Then V (C) = 4.

First we exhibit a four-point set S = {z1, z2, z3, z4} that is shattered by C. It suffices to
take z1 = (−1, 0), z2 = (1, 0), z3 = (0,−1), z4 = (0, 1). To show that no five-point set is
shattered by C, consider an arbitrary S = {z1, z2, z3, z4, z5}. Of these, pick any one point
with the smallest first coordinate and any one point with the largest first coordinate, and
likewise for the second coordinate (refer to Figure 2), for a total of at most four. Let S ′

denote the set consisting of these points; in Figure 2, S ′ = {z1, z2, z3, z4}. Then it is easy

76

Figure 2. Impossibility of shattering a five-point set by axis-parallel rectangles.

to see that any C ∈ C that contains the points in S ′ must contain all the points in S\S ′ as
well. Hence, no five-point set in R2 can be shattered by C, so V (C) = 4.

The same argument also works for axis-parallel rectangles in Rd, i.e., all sets of the form
C = [a1, b1]× [a2, b2]× . . .× [ad, bd], leading to the conclusion that the VC dimension of the
set of all axis-parallel rectangles in Rd is equal to 2d.

7.2.5. Sets determined by finite-dimensional function spaces – Dudley classes.
The following result is due to Dudley [Dud78]. Let Z be an arbitrary set, and let G be an
m-dimensional linear space of functions g : Z → R, which means there exist m linearly
independent functions ψ1, . . . , ψm ∈ G such that each g ∈ G has a (unique) representation of
the form

g =
m∑

j=1

cjψj,

for some coefficients c1, . . . , cm ∈ R. Let h be an arbitrary function on Z, not necessarily in
G, and let G + h = {g + h : g ∈ G}. Consider the class of classifiers

pos(G + h) :=
{
pos(g + h) : g ∈ G

}
,

where pos(g + h) := {z ∈ Z : g(z) + h(z) ≥ 0}.
Proposition 7.1 (VC Dimension of Dudley classes). V (pos(G + h)) = m.

Proof. (Proof that V (pos(G + h)) ≥ m.) Since the m functions ψ1, . . . , ψm are linearly
independent, there exist z1, . . . , zm ∈ Z such that the m × m matrix (ψj(zi))1≤i,j≤m is full
rank. That is because the points zi can be selected greedily such that the rank of the first i
rows of the matrix is i for 1 ≤ i ≤ m. We shall show that pos(G + h) shatters {z1, . . . , zm}.
To that end, fix an arbitrary b ∈ {−1, 1}m.1 Since the square matrix (ψj(zi))1≤i,j≤m has full
rank, there exists an m vector cb = (cb1, . . . , c

b
m) such that bi =

∑m
j=1 ψj(zi)c

b
j + h(zi) for

i ∈ [m]. Therefore, letting ψb =
∑
ψjc

b
j, we note that ψb ∈ G and ψb(zi) + h(zi) = bi for

1 ≤ i ≤ m, so zi ∈ pos(ψb + h) if and only if bi = 1, for 1 ≤ i ≤ m. Therefore, pos(G + h)
shatters {z1, . . . , zm}, which completes the proof that V (pos(G + h)) ≥ m.

(Proof that V (pos(G + h)) ≤ m.) To prove this, we need to show that no set of m + 1
points in Z can be shattered by pos(G + h). For the sake of argument by contradiction, fix

1Note that here we are using the two-point set {−1, 1} rather than {0, 1}. Why?

77

m+ 1 arbitrary points z1, . . . , zm+1 ∈ Z and suppose that pos(G+h) shatters {z1, . . . , zm+1}.
Let

G|zm+1 = {(g(z1), . . . , g(zm+1)) : g ∈ G} .

Note that G|zm+1 is a linear subspace of Rm+1 due to the fact that G is a linear space, and
the dimension of G|zm+1 is less than or equal to m, because the rank of G is m. Therefore,
there exists some nonzero vector v = (v1, . . . , vm+1) ∈ Rm+1 orthogonal to G|zm+1 , i.e., for
every g ∈ G

v1g(z1) + . . .+ vm+1g(zm+1) = 0.(7.3)

Consider two cases:
(a) If v1h(z1) + . . . + vm+1h(zm+1) = 0 (for example if h ≡ 0), it can be assumed that
vi < 0 for some i, because if not, the vector v could be replaced by −v. Let b be defined by
bi = 1{vi≥0}. Then for some gb ∈ G,

(
1{gb(z1)+h(z1)≥0}, . . . ,1{gb(zm+1)+h(zm+1)≥0}

)
= b

and
∑

i vi(g
b(zi) + h(zi)) = 0. But each term of this sum is nonnegative and the ith term

with vi < 0 is strictly positive, contradicting the sum equal to zero.
(b) If case (a) does not hold, then by replacing v by −v if necessary, it can be assumed that
v1h(z1) + . . .+ vm+1h(zm+1) < 0. Let b be defined by bi = 1{vi≥0}. Then for some gb ∈ G,

(
1{gb(z1)+h(z1)≥0}, . . . ,1{gb(zm+1)+h(zm+1)≥0}

)
= b

and
∑

i vi(g
b(zi) + h(zi)) =

∑
i vih(zi) < 0, but each term in the first sum is greater than or

equal to zero, a contradiction. So in either case we reach a contradiction, so V (pos(G+h)) ≤
m. �

This result can be used to bound the VC dimension of many classes of sets:

• Let C be the class of all closed halfspaces in Rd. Then any C ∈ C can be represented
in the form C = {z : g(z) ≥ 0} for g(z) = 〈w, z〉 − b with some nonzero w ∈ Rd and
b ∈ R. The set G of all such affine functions on Rd is a linear space of dimension
d+ 1, so by the above result we have V (C) = d+ 1.
• Let C be the class of all closed balls in Rd, i.e., sets of the form

C =
{
z ∈ Rd : ‖z − x‖2 ≤ r2

}

where x ∈ Rd is the center of C and r ∈ R+ is its radius. The concept class
corresponds to the class of binary valued functions pos(Go), where Go is the set of
functions g : Rd → R of the form:

g(z) = r2 − ‖z − x‖2 = r2 −
d∑

j=1

|zj − xj|2.(7.4)

78

Expanding the second expression for g in (7.4), we get

g(z) = 2
d∑

j=1

xjzj + r2 −
d∑

j=1

x2
j −

d∑

j=1

z2
j

=
d+1∑

j=1

cjψj(z) + h(z)

where cj = xj and ψj(z) = 2zj for j ∈ [d], cd+1 = r2 −∑d
j=1 x

2
j , ψd+1(z) = 1,

and h(z) = −∑d
j=1 z

2
j . Note that cd+1 = r2 −∑d

j=1 c
2
j ≥ −

∑d
j=1 c

2
j . Thus, the

constants c1, . . . , cd+1 are not quite arbitrary because they satisfy the constraint

cd+1 ≥ −
∑d

j=1 c
2
j . Let G denote the linear span of ψ1, . . . , ψd+1. Then Go ⊂ G + h

and G has dimension d+ 1. Therefore, V (C) = V (pos(Go)) ≤ V (pos(G+h)) = d+ 1.
Next we show that that V (C) ≥ d+1. By the first part of the proof of Proposition

7.1, there exists a set of d+ 1 points in Rd that is shattered by the set of closed half
spaces in the strict sense that none of the points is on the boundary of any of the
2d+1 half spaces that shatter the points. Therefore, there exists a set of 2d+1 balls,
each having a very large radius, that shatter the points as well. So V (C) ≥ d + 1.
In conclusion, we find V (C) = d+ 1.

7.2.6. VC dimension vs. number of parameters. Looking back at all these exam-
ples, one may get the impression that the VC dimension of a set of binary-valued functions
is just the number of parameters. This is not the case. Consider the following one-parameter
family of functions:

gθ(z) := sin(θz), θ ∈ R.
However, the class of sets

C =
{
{z ∈ R : gθ(z) ≥ 0} : θ ∈ R

}

has infinite VC dimension. Indeed, for any n, any collection of numbers z1, . . . , zn ∈ R, and
any binary string b ∈ {0, 1}n, one can always find some θ ∈ R such that

sgn(sin(θzi)) =

{
+1, if bi = 1

−1, if bi = 0
.

7.3. Growth of shatter coefficients: the Sauer–Shelah lemma

The importance of VC classes in learning theory arises from the fact that, as n tends
to infinity, the fraction of subsets of any {z1, . . . , zn} ⊂ Z that are shattered by a given VC
class C tends to zero. We will prove this fact in this section by deriving a sharp bound on the
shatter coefficients Sn(C) of a VC class C. This bound has been (re)discovered at least three
times, first in a weak form by Vapnik and Chervonenkis [VC71] in 1971, then independently
and in different contexts by Sauer [Sau72] and Shelah [She72] in 1972. In strict accordance
with Stigler’s law of eponymy2, it is known in the statistical learning literature as the Sauer–
Shelah lemma.

2“No scientific discovery is named after its original discoverer”
(http://en.wikipedia.org/wiki/Stigler’s law of eponymy)

79

Let us first set up some notation. Given integers n, d ≥ 1, let
(
n
≤d

)
denote the number

of subsets of a set of cardinality n with cardinality less than or equal to d. It follows that(
n
≤d

)
= 2n for d ≥ n, and, in general,

(
n

≤ d

)
=

d∑

i=0

(
n

i

)
,

with the convention that
(
n
i

)
= 0 for i > n.

Lemma 7.2 (Sauer–Shelah lemma). Let C be a class of subsets of some space Z with
V (C) = d <∞. Then for all n,

Sn(C) ≤
(
n

≤ d

)
.(7.5)

Also,
(
n
≤d

)
≤ (n+ 1)d and, for n ≥ d,

(
n
≤d

)
≤
(
ne
d

)d
.

Let C be a VC class of subsets of some space Z. The Sauer-Shelah lemma implies

lim sup
n→∞

Sn(C)

2n
≤ lim

n→∞

(n+ 1)V (C)

2n
= 0.

In other words, as n becomes large, the fraction of subsets of an arbitrary n-element set
{z1, . . . , zn} ⊂ Z that are shattered by C becomes negligible. Moreover, combining the
bounds of the Sauer–Shelah lemma with the finite class lemma for Rademacher averages,
Lemma 6.1 (with L =

√
n and N = (n+ 1)V (F)), we get the following:

Theorem 7.1. Let Z be an arbitrary set and let F be a class of binary-valued functions
f : Z → {0, 1}, or a class of functions f : Z → {−1, 1}. Let Zn be an i.i.d. sample of size
n drawn according to an arbitrary probability distribution P ∈ P(Z). Then, with probability
one,

Rn(F(Zn)) ≤ 2

√
V (F) log(n+ 1)

n
.

A more refined chaining technique [Dud78] can be used to remove the logarithm in the
above bound:

Theorem 7.2. There exists an absolute constant C > 0, such that under the conditions
of the preceding theorem, with probability one,

Rn(F(Zn)) ≤ C

√
V (F)

n
.

7.3.1. Proof of the Sauer-Shelah lemma. Lemma 7.2 is proved in this section, based
on the technique of shifting [Fra87, Fra91]. We first write the definition of VC dimension
in case the base set consists of [n] = {1, . . . , n}, and subsets of [n] are represented as binary
vectors. Let U ⊂ {0, 1}n. Given A ⊂ [n], if b ∈ {0, 1}n let πA(b) , (bi : i ∈ A), called the
restriction of b to A, and let πA(S) = {πA(b) : b ∈ S}. The support of a binary vector b is
{i : bi = 1}. A nonempty set A ⊂ [n] is said to be shattered by U if πA(U) contains all 2|A|

possible sequences. The VC dimension of U, denoted by V (U), is the maximum d such that
there exists a subset of [n] of cardinality d that is shattered by U.

80

Lemma 7.3 (Sauer-Shelah lemma, simple setting). Suppose U ⊂ {0, 1}n with V (U) = d.

Then |U| ≤
(
n
≤d

)
. Also,

(
n
≤d

)
≤ (n+ 1)d and, for n ≥ d,

(
n
≤d

)
≤
(
ne
d

)d
.

Lemma 7.2 follows by applying Lemma 7.3 to U = {(f(z1), . . . , f(zn)) : f ∈ F} for
arbitrary z1, . . . , zn ∈ Z, because for any such U, V (U) ≤ V (F).

Proof of Lemma 7.3. It is shown below that there exists V ⊂ {0, 1}n satisfying the
following three properties:

(1) |V| = |U|
(2) For any A ⊂ [n], if A is shattered by V then A is shattered by U

(3) V is downward closed. By definition, this means, for any b, b′ ∈ {0, 1}n such that
b′ ≤ b (bitwise) and b ∈ V, it holds that b′ ∈ V.

This will complete the proof, because the third property implies that V shatters the support
of any vector in V. Therefore by property 2, U shatters the support of any vector in V. 3

Thus, any vector in V can have at most d nonzero bits. So |U| = |V| ≤
(
n
≤d

)
. It remains to

show there exists V ⊂ {0, 1}n satisfying the three properties above. For that we refer to the
shifting algorithm described in pseudocode as Algorithm 1, describing how U is transformed
into V. For i ∈ [n], τi denotes the toggle function. It operates on binary vectors such that
τi(b) is obtained from b by flipping the ith bit of b from 0 to 1 or vice versa. The algorithm
is illustrated in Figure 3.

Algorithm 1 Shifting algorithm

Input: U ⊂ {0, 1}n for some n ≥ 1

1. for i in [n] :

2. for b in U :

3. if bi = 1 and τi(b) 6∈ U :

4. replace b by τi(b)

5. repeat steps 1-4 until no further changes occur

6. return V = U

The algorithm terminates because the total number of 1’s strictly decreases each time a
change occurs in steps 1-4. Property 1 is true because |U| is never changed by the algorithm.
Property 3 is true because otherwise more changes would have been possible in steps 1-4. It
remains to check property 2. Consider the block of steps 2-4, executed for some i ∈ [n]. Let
U denote the state just before execution of steps 2-4 and let U′ denote the state just after
execution of those steps. Suppose A ⊂ [n] such that U′ shatters A. It suffices to prove U also
shatters A.

The only changes to U made during the block of steps 2-4 is that the ith bit of some
vectors in U might be changed from 1 to 0. So if i 6∈ A then πA(U) = πA(U′), so that U also
shatters A.

3So the number of sets shattered by U is greater than or equal to the cardinality of U, a result known
as Pajor’s lemma [Paj85].

81

Initial U:

0 1 1 1 0
1 1 0 0 0

1 1 0 1 0

1 1 1 1 0
1 1 1 1 1

0 1 1 0 0

0 1 1 1 1
0 0 1 0 0

0 0 1 1 0

0 0 1 1 1
0 0 0 1 0

0 0 0 1 1
0 0 0 0 1

0 0 0 0 0

After 2-4 for i ∈ {1, 2} :

0 1 1 1 0
0 1 0 0 0

0 1 0 1 0

1 0 1 1 0
1 0 1 1 1

0 1 1 0 0

0 1 1 1 1
0 0 1 0 0

0 0 1 1 0

0 0 1 1 1
0 0 0 1 0

0 0 0 1 1

0 0 0 0 1
0 0 0 0 0

Figure 3. Illustration of the shifting algorithm. The input set U is the set of
rows of the matrix on the left. The matrix on the right represents U after steps
2-4 of Algorithm 1 have been applied for i ∈ {1, 2}. Bits that were toggled are
shown in bold font. The input U shatters all singleton sets, all pairs except for
{1, 2}, and the set {2, 3, 4}. After steps 2-4 have been applied for i ∈ {1, 2}, U
as shown on the right, shatters all singleton sets of columns, all pairs except
{1, 2}, {1, 3} and {1, 4}, and no triplets.

So suppose i ∈ A. Let b denote an arbitrary binary vector indexed by A. Since U′ shatters
A there is a vector b′ ∈ U′ such that b = πA(b′). We need to show that b = πA(b′′) for some
b′′ ∈ U. If bi = 1 then, since the algorithm only turns 1’s into 0’s, b′ ∈ U, so it suffices to
take b′′ = b′. If bi = 0, then since U′ shatters A there must be another vector b′′′ ∈ U′ such
that πA(b′′′) = τi(b). Since b′′′i = 1 and b′′′ ∈ U′, it must be that b′′′ ∈ U. Since b′′′ was not
modified by the block of steps 2-4, it must be that τi(b

′′′) ∈ U. Therefore, it suffices to take
b′′ = τi(b

′′′). Thus, U shatters A as claimed.
To prove the first upper bound on

(
n
≤d

)
, recall that

(
n
≤d

)
is the number of subsets of n

distinct objects with cardinality less than or equal to d. The bound is true because there are
(n + 1)d ways to make d draws with replacement from the set {0, 1, · · · , n}, and the set of
nonzero numbers so drawn can be made to equal any subset of {1, . . . , n} with cardinality
less than or equal to d. For example, if d = 5 and n = 10, the draws (4, 6, 3, 0, 0) correspond
to the set {3, 4, 6} and the draws (4, 6, 0, 0, 0) correspond to the set {4, 6}.

The second upper bound on
(
n
≤d

)
follows from:

(
d

n

)d(
n

≤ d

)
=

d∑

i=0

(
n

i

)(
d

n

)d
≤

d∑

i=0

(
n

i

)(
d

n

)i
(a)
=

(
1 +

d

n

)n (b)

≤ ed,

where (a) is due to the binomial theorem, and (b) follows from 1 + x ≤ ex. �

82

CHAPTER 8

Binary classification

In the first section of this chapter, we apply the results of the previous two chapters about
ERM, Rademacher averages and VC dimension, directly to the concept learning problem.
This brings to fruition the sneak preview given in Section 6.4. Then in Section 8.2 we turn
to the use of surrogate loss functions, which offers a way to regularize the empirical risk,
yielding in some cases convex optimization problems, and a parameter to trade between
approximation accuracy and generalization ability. Motivated by Section 8.2 the remaining
sections focus on various classes of classifiers and bounds on their Rademacher averages,
which can be used to give probabilistic performance guarantees.

8.1. The fundamental theorem of concept learning

A binary classification learning problem can be modeled as a triple (X,P,C), where X is a
general set, P (also denoted by P(Z)) is a set of probability distributions over Z = X×{0, 1},
and C is a class of subsets of X, with the following interpretation. A fresh observation is
modeled as a random couple Z = (X, Y), where X ∈ X is called the feature vector and
Y ∈ {0, 1} is called the label 1. In the spirit of the model-free framework, we assume
that the relationship between the features and the labels is stochastic and described by
an unknown probability distribution P ∈ P(Z). As usual, we consider the case when we
are given an i.i.d. sample of length n from P . The goal is to learn a concept, i.e., a set

Ĉ ⊂ X such that the probability of classification error, P(1{X∈Ĉ} 6= Y), is small. As we have

seen before, the optimal choice is the Bayes classifier, C∗Bayes = {x : η(x) ≥ 1/2}, where
η(x) := P[Y = 1|X = x] is the regression function. However, since we make no assumptions
on P , in general we cannot hope to learn the Bayes classifier. Instead, we focus on a more
realistic goal: We fix a collection C of concepts and then use the training data to come up

with a hypothesis Ĉn ∈ C, such that

P(1{X∈Ĉn} 6= Y) ≈ inf
C∈C

P(1{X∈C} 6= Y)

with high probability.
By way of notation, let us write LP (C) for the classification error of C, i.e., LP (C) :=

P(1{X∈C} 6= Y), and let L∗P (C) denote the smallest classification error attainable over C:

L∗P (C) := inf
C∈C

LP (C).

We will assume that a minimizing C∗ ∈ C exists.

1In the next section we will switch from using {0, 1}, which connects more directly to concept classifica-
tion, to {−1, 1}, which is more convenient for discussion of surrogate loss.

83

The empirical risk minimization (ERM) learning algorithm for this problem was defined
in Chapter 5. Given the training data Zn = (Z1, . . . , Zn), the ERM algorithm returns a

concept Ĉn such that

Ĉn ∈ arg max
C∈C

LPn(C),

where Pn is the empirical distribution of the training data. Chapter 5 showed that proba-
bilistic performance guarantees for ERM can be given if uniform convergence of empirical
means (UCEM) holds. Chapter 6 abstracts away the loss functions and considers a class
of functions F defined on a space Z. A key result of the chapter, based on a symmetriza-
tion technique, is that the UCEM property can be established if there are suitable upper
bounds on the average Rademacher complexity of F. In turn, Chapter 7 gives upper bounds
on Rademacher averages for classes of binary functions in terms of the VC dimension of
those classes. To combine these results we trace backwards from the abstract formulation of
Chapter 6 to the original problem.

For the concept learning problem with the usual 0-1 loss, each concept C corresponds to
a function `C : Z→ {0, 1} defined by `C(z) = 1{y 6=1{x∈C}}. Let FC = {`C : C ∈ C}. Thus, FC

is a class of binary valued functions induced by C and the 0-1 loss function. The following
lemma shows that the VC dimension of C is the same as the VC dimension of the induced
class of functions.

Lemma 8.1. Given a concept class C consisting of subsets of a base space X, let FC =
{`C : C ∈ C} denote the set of binary valued functions on X×{0, 1} induced by the 0-1 loss.
In other words, `C((x, y)) = 1{y 6=1{x∈C}}. Then V (C) = V (FC).

Proof. To begin, we claim that for any {x1, . . . , xn} ⊂ X, C shatters {x1, . . . , xn} if and
only if FC shatters {(x1, 0), . . . , (xn, 0)}. For any x ∈ X, if z = (x, 0), `C(z) = `C((x, 0)) =
1{06=1{x∈C}} = 1{x∈C}. Thus, for any b ∈ {0, 1}n and any C ∈ C,

(1{x1∈C}, . . . ,1{xn∈C}) = b if and only if (`C((x1, 0)), . . . , `C((xn, 0))) = b.

The claim follows.
The next step is to show V (C) ≤ V (FC). Let n = V (C) if V (C) <∞ and n be an arbitrary

positive integer if V (C) = ∞. Then there exists {x1, . . . , xn} ⊂ X that is shattered by C.
Thus, by the claim just shown, {(x1, 0), . . . , (xn, 0)} is shattered by FC. Therefore n ≤ V (FC).
Thus, V (C) ≤ V (FC).

The next claim is that FC does not shatter any two point set of the form {(x, 0), (x, 1)}.
For any x ∈ X and any C ∈ C, `C((x, 0)) 6= `C((x, 1)). Thus, there does not exist C ∈ C

such that (`C((x, 0)), `C((x, 1)) = (1, 1). Therefore, FC does not shatter {(x, 0), (x, 1)}, as
claimed.

It remains to show V (C) ≥ V (FC). Let n = V (FC) if V (FC) < ∞ and n be an arbitrary
positive integer if V (FC) =∞. Then there exists {z1, . . . , zn} ⊂ X× {0, 1} that is shattered
by FC. For each i, zi = (xi, b

′
i) for some b′i ∈ {0, 1}. Since FC does not shatter any two point

set of the form {(x, 0), (x, 1)}, the xi’s are distinct. Note that `C(zi) = b′i⊕ `C((xi, 0)), where
“⊕” denotes modulo two addition. Therefore, {(x1, 0), . . . , (xn, 0)} is also shattered by FC.
Therefore, by the claim shown at the beginning of the proof, {x1, . . . , xn} is shattered by C.
Thus, n ≤ V (C), so that V (C) ≥ V (FC). �

84

Warning: In what follows, we will use C or c to denote various absolute constants; their
values may change from line to line.

The bounds in Theorems 7.1 and 7.2 on Rn(F(Zn)) that hold with probability one are also
bounds on ERn(F(Zn)), so either of them can be combined with Corollary 6.1. In particular,
using the first part of Corollary 6.1 together with Lemma 8.1 implies the following bounds
for ERM for concept learning. The thread of the proof we have given is pictured in Fig. 2.

Theorem 8.1 (Performance bounds for concept learning by ERM). Consider an agnostic
concept learning problem (X,P,C), and let δ > 0. For any P ∈ P, the ERM algorithm satisfies

(8.1) LP (Ĉn) ≤ L∗P (C) + 8

√
V (C) log(n+ 1)

n
+

√
2 log (1/δ)

n

with probability at least 1 − δ. There is a universal constant C so that for any probability
distribution P on Z and δ ∈ (0, 1), the ERM algorithm satisfies

(8.2) LP (Ĉn) ≤ L∗P (C) + C

√
V (C)

n
+

√
2 log (1/δ)

n

with probability at least 1− δ.
Hence, a concept learning problem (X,P,C) is PAC learnable if V (C) < +∞. The converse

is also true; such results are sometimes called “no free lunch” theorems. We thus have the
following corollary.

Corollary 8.1. (Fundamental theorem of concept learning) A concept learning problem
(X,P,C) is PAC learnable if and only if V (C) < +∞.

8.1.1. Linear and generalized linear discriminant rules. Generalized linear dis-
criminant rules correspond to using a Dudley class of concepts, as described in Section
7.2.5, and repeated here. Let Z be an arbitrary set, and let G be an m-dimensional linear
space of functions g : Z → R, which means there exist m linearly independent functions
ψ1, . . . , ψm ∈ G such that each g ∈ G has a (unique) representation of the form

g =
m∑

j=1

cjψj,

for some coefficients c1, . . . , cm ∈ R. Let h be an arbitrary function on Z, not necessarily in
G, and let G + h = {g + h : g ∈ G}. Consider the class of classifiers:

pos(G + h) :=
{
{z ∈ Z : g(z) + h(z) ≥ 0} : g ∈ G

}
.

By Proposition 7.1, the VC dimension of the class is m. Thus, Theorem 8.1 holds for the
family of Dudley classifiers with V (C) = m.

One of the simplest classification rules (and one of the first to be studied) is a linear
discriminant rule. Linear discriminant rules are the half-space classifiers in X = Rd, obtained
by thresholding linear functions. They correspond to concepts C ∈ C that can be represented
in the form

C = {x : 〈w, z〉 ≥ b} = {z : g(z) ≥ 0}
85

for g(z) = 〈w, z〉 − b with some nonzero w ∈ Rd and b ∈ R. The set G of all such affine
functions on Rd is a linear space of dimension d+ 1, so by the above result we have V (C) =
d+ 1. Thus, Theorem 8.1 holds for the family of half-space classifiers with V (C) = d+ 1.

8.1.2. Two fundamental issues. As Theorem 8.1 shows, the ERM algorithm applied
to the collection of all (generalized) linear discriminant rules is guaranteed to work well in
the sense that the classification error of the output hypothesis will, with high probability,
be close to the optimum achievable by any discriminant rule with the given structure. The
same argument extends to any collection of concepts C with VC dimension much smaller

than the sample size n. In other words, with high probability the difference LP (Ĉ)−L∗P (C)
will be small. However, precisely because the VC dimension of G cannot be too large, the
approximation properties of C will be limited. Another problem is computational. For
instance, the problem of finding an empirically optimal linear discriminant rule is NP-hard.
In other words, unless P is equal to NP, there is no hope of coming up with an efficient ERM
algorithm for linear discriminant rules that would work for all feature space dimensions d. If
d is fixed, then it is possible to enumerate all projections of a given sample Zn onto the class
of indicators of all halfspaces in O(nd−1 log n) time, which allows for an exhaustive search
for an ERM solution, but the usefulness of this naive approach is limited to d < 5.

8.2. Risk bounds for combined classifiers via surrogate loss functions

One way to sidestep the above approximation-theoretic and computational issues is to
replace the 0–1 Hamming loss function that gives rise to the probability of error criterion
with some other loss function. What we gain is the ability to bound the performance of
various complicated classifiers built up by combining simpler base classifiers in terms of
the complexity (e.g, the VC dimension) of the collection of the base classifiers, as well as
considerable computational advantages, especially if the problem of minimizing the empirical
surrogate loss turns out to be a convex programming problem. What we lose, though, is that,
in general, we will not be able to compare the generalization error of the learned classifier to
the minimum classification risk. Instead, we will have to be content with the fact that the
generalization error will be close to the smallest surrogate loss.

For the remainder of this chapter, we shall assume that the labels take values ±1, and
we will consider ±1 valued classifiers g : X→ {−1, 1} rather than concepts C ⊂ X. Consider
classifiers of the form

gf (x) = sgn f(x) ≡
{

1, if f(x) ≥ 0

−1, otherwise
(8.3)

where f : X → R is some function. The generalized linear discriminant rules considered in
the previous section have such form, with the family of f ’s having finite linear dimension. As
we shall see, other families of functions f can be used. For a joint distribution P of (X, Y),
the risk, or probability of classification error, of using gf satisfies

L(gf) = P(gf (X) 6= Y) = P(Y gf (X) ≤ 0)
(a)

≤ P(Y f(X) ≤ 0) = E[1{−Y f(X)≥0}].(8.4)

(The inequality (a) in (8.4) is sometimes strict because if f(X) = 0 and Y = 1, then
Y f(X) ≤ 0, even though there is no classification error, i.e. Y gf (X) = 1 > 0.) From now

86

on, when dealing with classifiers of the form (8.3), we write L(f) instead of L(gf) to keep
the notation simple.

The idea of surrogate loss function is to replace 1{x≥0} at the right end of (8.4) by a
continuous, often convex, function that dominates it. That is, suppose ϕ : R → R+ is such
that

(1) ϕ is continuous
(2) ϕ is nondecreasing
(3) ϕ(x) ≥ 1{x≥0} for all x ∈ R.

We call ϕ a penalty function, similar to use of the term for constrained optimization problems.
The surrogate loss function, or ϕ-loss function, corresponding to penalty function ϕ is defined
by `ϕ(y, u) , ϕ(−yu). Note that the surrogate loss function is greater than or equal to the
original loss function derived from 0-1 loss: `(y, u) ≤ `ϕ(y, u) for all (y, u) ∈ {−1, 1} × R.

Table 1 displays some popular examples of penalty functions, along with their Lipschitz
constants, and surrogate loss functions.

Table 1. Some popular penalty functions

Name Penalty function ϕ(x) Mϕ surrogate loss function `ϕ(y, u)

exponential ex – e−yu

logit log2(1 + ex) 1
ln 2

log2(1 + e−yu)

hinge (1 + x)+ 1 (1− yu)+

ramp min

{
1,
(

1 + x
γ

)
+

}
1
γ

min

{
1,
(

1− yu
γ

)
+

}

In order to avoid overuse of the letter “L,” denote the ϕ-risk of f by

Aϕ(f) := E[ϕ(−Y f(X))]

and its empirical version

Aϕ,n(f) :=
1

n

n∑

i=1

ϕ(−Yif(Xi)).

Since the surrogate loss is greater than or equal to the 0-1 loss, L(f) ≤ Aϕ(f) and
Ln(f) ≤ Aϕ,n(f).

With these preliminaries out of the way, we can state and prove the basic surrogate
loss bound, due to Koltchinskii and Panchenko [KP02]. We shall again appeal to the

uniform approximation method to bound Aϕ(f̂) (and hence L(f̂).) A key role is played by
the maximum deviation of empirical (surrogate) risk from general (surrogate) risk, defined
by

∆n(Zn) := sup
f∈F
|Aϕ(f)− Aϕ,n(f)| .

Lemma 8.2. Consider a class F of functions from X into R, and let ϕ be a penalty
function such that:

87

(i) For some B > 0, ϕ(−yf(x)) ∈ [0, B] for all (x, y) ∈ X× {0, 1} and all f ∈ F.
(ii) ϕ is Lipschitz-continuous with constant Mϕ: |ϕ(u)−ϕ(v)| ≤Mϕ|u−v| for u, v ∈ R.

Then for any n and t ≥ 0, with probability at least 1− e−2t2 ,

∆n(Zn) ≤ 4MϕERn(F(Xn)) +
Bt√
n

(8.5)

Proof. Note that Aϕ(f) and Aϕ,n(f) are the general and empirical averages, respec-
tively, of the surrogate loss function `ϕ,f (x, y) = ϕ(−yf(x)). For a reason that will become
apparent, we’d prefer to have functions with value 0 when f(x) = 0, so we will work with
functions of the form ϕ(−yf(x))−ϕ(0). This works out because subtraction of ϕ(0) has the
same effect on the generalization risk as on the empirical risk:

Aϕ(f)− Aϕ,n(f) = P (`ϕ,f)− Pn(`ϕ,f)

= P (`ϕ,f − ϕ(0))− Pn(`ϕ,f − ϕ(0))

Thus, with Hϕ being the class of functions on Z = X×{0, 1} of the form ϕ(−yf(x))−ϕ(0),
for f ∈ F, the familiar symmetrization argument from Section 6.2 yields

E∆n(Zn) ≤ 2ERn (Hϕ(Zn)) .(8.6)

Next, consider the class of functions H of the form h(x, y) = −yf(x) for f ∈ F. We shall
now show that the multiplicative structure of the loss function with y ∈ {−1, 1} implies that
for any sample Zn = (Xn, Y n), Rn(H(Zn)) = Rn(F(Xn)). That is, given Xn, no matter
how the n points X1, . . . , Xn are labeled with ±1’s to get Y n, the Rademacher average of
Rn(H(Zn)) is the same. It is because if εi is a Rademacher random variable and Yi is a fixed
value in {1,−1}, then εiYi has the same distribution as εi. In detail:

Rn(H(Zn)) =
1

n
Eε

[
sup
h∈H

∣∣∣∣
n∑

i=1

εih(Zi)

∣∣∣∣

]

=
1

n
Eε

[
sup
f∈F

∣∣∣∣
n∑

i=1

εiYif(Xi)

∣∣∣∣

]

=
1

n
Eε

[
sup
f∈F

∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣

]

= Rn(F(Xn))(8.7)

The next step is to apply the contraction principle for Rademacher averages, Proposition
6.2, using the mapping F : R→ R defined by F (v) = ϕ(v)− ϕ(0). Note that Hϕ = F ◦H,
F (0) = 0 (due to the subtraction of ϕ(0)) as required for the contraction principle, and F is
Mϕ Lipschitz continuous. The contraction principle and the fact (8.7) imply

Rn(Hϕ(Zn)) = Rn(F ◦H(Zn)) ≤ 2MϕRn(H(Zn)) = 2MϕRn(F(Xn)).

Taking the expectation over Zn and combining with (8.6) yields

E∆n(Zn) ≤ 4MϕERn (F(Xn)) .(8.8)

88

Now, since the surrogate loss functions `ϕ,f (x, y) take values in [0, B], the function Zn 7→
∆n(Zn) has bounded differences with c1 = . . . = cn = B/n. Therefore, from (8.8) and from
McDiarmid’s inequality, we have for every t > 0 that

P

(
∆n(Zn) ≥ 4MϕERn(F(Xn)) +

Bt√
n

)
≤ P

(
∆n(Zn) ≥ E∆n(Zn) +

Bt√
n

)
≤ e−2t2 .

�

Lemma 8.2, together with Proposition 6.1, imply the following theorem.

Theorem 8.2. Consider any learning algorithm A = {An}∞n=1, where, for each n, the
mapping An receives the training sample Zn = (Z1, . . . , Zn) as input and produces a function

f̂n : X → R from some class F. Let ϕ be a penalty function satisfying the conditions of
Lemma 8.2. The following hold:

• (single version) For any n and t ≥ 0,

L(f̂n) ≤ Aϕ(f̂n) ≤ Aϕ,n(f̂n) + 4MϕERn(F(Xn)) +
Bt√
n

with probability at least 1 − e−2t2. (If B = 1 and e−2t2 = δ then Bt√
n

=
√

ln(1/δ)
2n

as

usual, but we leave in t for generality used in the proof of the next theorem.)
• (double version) If A is an ERM algorithm for the surrogate loss, for any n and

δ ∈ (0, 1), the following bound holds with probability at least 1− e−2t2 :

L(f̂n) ≤ Aϕ(f̂n) ≤ A∗ϕ(F) + 8MϕERn(F(Xn)) +
2Bt√
n

Through a simple application of the union bound, we can extend Theorem 8.2 to the
case of a possibly countably infinite family {ϕk}k≥1 of penalty functions. Both a single and
double version holds; for brevity we state the single version.

Theorem 8.3. Let {ϕk}k≥1 be a family of penalty functions, where each ϕk takes values
in [0, 1] and is Lipschitz-continuous with constant Mϕk . Then, for any n and any t > 0,

L(f) ≤ inf
k≥1

{
Aϕk,n(f) + 4MϕkERn(F(Xn)) +

√
log k

n

}
+

t√
n
, ∀f ∈ F(8.9)

with probability at least 1− 2e−2t2.

Proof. For each k ≥ 1, by Theorem 8.2,

L(f) ≤ Aϕk,n(f) + 4MϕkERn(F(Xn)) +

√
log k

n
+

t√
n
, ∀f ∈ F(8.10)

with probability at least 1− e−2(t+
√

log k)2 ≥ 1− k−2e−2t2 . Therefore, by the union bound,

P

[
∃f ∈ F : L(f) > inf

k≥1

{
Lϕk,n(f) + 4MϕkERn(F(Xn)) +

√
log k

n

}
+

t√
n

]

≤
∑

k≥1

e−2t2

k2
≤ 2e−2t2 ,

89

where we have used the fact that
∑

k≥1 k
−2 = π2/6 ≤ 2. �

The main consequence of Theorem 8.3 is the following result:

Theorem 8.4. Let ϕ : R→ [0, 1] be a Lipschitz-continuous penalty function with constant
Mϕ, and such that, for all 0 < γ ≤ γ′,

ϕ(u/γ) ≤ ϕ(u/γ′), ∀u.(8.11)

Then, for any n and any t > 0,

L(f) ≤ inf
γ∈(0,1]

{
Aϕ(·/γ),n(f) +

8Mϕ

γ
ERn(F(Xn)) +

√
log log2(2/γ)

n

}
+

t√
n
, ∀f ∈ F

(8.12)

with probability at least 1− 2e−2t2.

Remark 8.1. For example, the ramp function ϕ(u) = min{1, (1 + u)+} or the saturated
exponential ϕ(u) = min{1, eu} satisfy the monotonicity condition (8.11).

Proof. For each k ≥ 0, let γk := 1/2k. For k ≥ 1, ϕk(u) := ϕ(u/γk) is a valid penalty

function with Lipschitz constant Mϕk ≤ Mϕ

γk
. Applying Theorem 8.3 to the family {ϕk}, we

see that, with probability at least 1− 2e−2t2 ,

L(f) ≤ inf
k≥1

{
Aϕk,n(f) +

4Mϕ

γk
ERn(F(Xn)) +

√
log k

n

}
+

t√
n
, ∀ ∈ F.(8.13)

Now, for any γ ∈ (0, 1], there exists k such that γ ∈ (γk, γk−1]. Then

ϕk(u) = ϕ(u/γk) ≤ ϕ(u/γ)

by virtue of (8.11), and the following also hold:

1

γk
≤ 2

γ
and log k = log log2

1

γk
≤ log log2(2/γ).

Therefore,

Aϕ(·/γ),n(f) +
8Mϕ

γ
ERn(F(Xn)) +

√
log log2(2/γ)

n

≥ Aϕk,n(f) +
4Mϕ

γk
ERn(F(Xn)) +

√
log k

n
∀ ∈ F.

Consequently, (8.13) implies (8.12), and the proof is complete. �

What the above theorems tell us is that the performance of the learned classifier sgn f̂n
is controlled by the Rademacher average of the class F of functions f , and we can always
arrange it to be relatively small. In the next four sections of this chapter we look at several
specific examples.

90

8.3. Weighted linear combination of classifiers

Let G = {g : Rd → {−1, 1}} be a class of base classifiers (not to be confused with Bayes
classifiers!), and consider the class

Fλ :=

{
f =

N∑

j=1

cjgj : N ∈ N,
N∑

j=1

|cj| ≤ λ; g1, . . . , gN ∈ G

}
,

where λ > 0 is a tunable parameter. Then for each f =
∑N

j=1 cjgj ∈ Fλ the corresponding

classifier gf of the form (8.3) is given by

gf (x) = sgn

(
N∑

j=1

cjgj(x)

)
.

A useful way of thinking about gf is that, upon receiving a feature x ∈ Rd, it computes the
outputs g1(x), . . . , gN(x) of the N base classifiers from G and then takes a weighted “majority
vote” – indeed, if we had c1 = . . . = cN = λ/N , then sgn(gf (x)) would precisely correspond
to taking the majority vote among the N base classifiers. Note, by the way, that the number
of base classifiers is not fixed, and can be learned from the data.

Now, Theorem 8.2 tells us that the performance of any learning algorithm that accepts a

training sample Zn and produces a function f̂n ∈ Fλ is controlled by the Rademacher average
Rn(Fλ(X

n)). It turns out, moreover, that we can relate it to the Rademacher average of the
base class G. To start, note that

Fλ = λ · absconvG,

where

absconvG =

{
N∑

j=1

cjgj : N ∈ N;
N∑

j=1

c = |cj| ≤ 1; g1, . . . , gN ∈ G

}

is the absolute convex hull of G. Therefore

Rn(Fλ(X
n)) = λ ·Rn(G(Xn)).

Now note that the functions in G are binary-valued. Therefore, assuming that the base class
G is a VC class, we will have

Rn(G(Xn)) ≤ C

√
V (G)

n
.

Combining these bounds with the single version bound of Theorem 8.2, we conclude that for

any f̂n selected from Fλ based on the training sample Zn, the bound

L(f̂n) ≤ Aϕ,n(f̂n) + CλMϕ

√
V (G)

n
+

√
log(1/δ)

2n

will hold with probability at least 1 − δ (assuming, as before, that ϕ takes values in [0, 1])
and Mϕ is the Lipschitz constant of the penalty function ϕ. The double version bound of
Theorem 8.2 can be similarly specialized.

Note that the above bound involves only the VC dimension of the base class, which is
typically small. On the other hand, the class Fλ obtained by forming weighted combinations
of classifiers from G is extremely rich, and, when thresholded to yield binary valued functions,

91

will generally have infinite VC dimension! But there is a price we pay: The first term is

the empirical surrogate risk Aϕ,n(f̂n), rather than the empirical classification error Ln(f̂n).
However, it is possible to choose the penalty function ϕ in such a way that Aϕ,n(·) can be
bounded in terms of a quantity related to the number of misclassified training examples.
Here is an example.

Fix a positive parameter γ > 0 and consider

ϕ(x) =

0, if x ≤ −γ
1, if x ≥ 0

1 + x/γ, otherwise

This is a valid penalty function that takes values in [0, 1] and is Lipschitz-continuous with
constant Mϕ = 1/γ. In addition, we have ϕ(x) ≤ 1{x>−γ}, which implies that ϕ(−yf(x)) ≤
1{yf(x)<γ}. Therefore, for any f we have

Aϕ,n(f) =
1

n

n∑

i=1

ϕ(−Yif(Xi)) ≤
1

n

n∑

i=1

1{Yif(Xi)<γ}.(8.14)

The quantity

Lγn(f) :=
1

n

n∑

i=1

1{Yif(Xi)<γ}(8.15)

is called the margin error of f . Notice that:

• For any γ > 0, Lγn(f) ≥ Ln(f)
• The function γ 7→ Lγn(f) is increasing.

Notice also that we can write

Lγn(f) =
1

n

n∑

i=1

1{Yif(Xi)<0} +
1

n

n∑

i=1

1{0≤Yif(Xi)<γ},

where the first term is just Ln(f), while the second term is the number of training examples
that were classified correctly, but only with small “margin” (the quantity Y f(X) is often
called the margin of the classifier f).

Theorem 8.5 (Margin-based risk bound for weighted linear combinations). For any
γ > 0, the bound

L(f̂n) ≤ Lγn(f̂n) +
Cλ

γ

√
V (G)

n
+

√
log(1/δ)

2n
(8.16)

holds with probability at least 1− δ.

Remark 8.2. Note that the first term on the right-hand side of (8.16) increases with γ,

while the second term decreases with γ. Hence, if the learned classifier f̂n has a small margin
error for a large γ, i.e., it classifies the training samples well and with high “confidence,”
then its generalization error will be small.

92

8.4. AdaBoost

A particular strategy for combining classifiers is the so-called AdaBoost algorithm of
Freund and Schapire [FS97]. Let a class G of classifiers g : Rd → {−1,+1} be given; the
elements g ∈ G are referred to as weak learners. Given training data Zn = (Z1, . . . , Zn),
where each Zi = (Xi, Yi) with Xi ∈ Rd and Yi ∈ {−1,+1}, the AdaBoost algorithm works
iteratively as follows:

• Initialize w(1) = (w
(1)
1 , . . . , w

(1)
n) with w

(1)
i = 1/n for all i.

• At each iteration k = 1, . . . , K:
– let gk ∈ G be any weak learner that minimizes the weighted empirical error

ek(g) :=
n∑

i=1

w
(k)
i 1{Yi 6=g(Xi)}(8.17)

over G. Let ek := ek(gk). The standing assumption is that ek ≤ 1/2, i.e., there
exists at least one weak learner with better-than-chance performance.

– Update the weight vector w(k) to w(k+1), where, for each i ∈ [n],

w
(k+1)
i =

w
(k)
i exp (−αkYigk(Xi))

Zk
,(8.18)

where αk := 1
2

log 1−ek
ek

and

Zk :=
n∑

i=1

w
(k)
i exp (−αkYigk(Xi)) .(8.19)

• After K iterations, output the classifier f̂n : Rd → R given by

f̂n(x) :=

∑K
k=1 αkgk(x)∑K

k=1 αk
.(8.20)

Note that, since αk ≥ 0 for all k, f̂n ∈ conv(G). (The reason f̂n(x) is normalized in

(8.20) is for theoretical purposes. The final output sgn(f̂n(x)) is unaffected.)

The following lemma is crucial in the analysis of AdaBoost:

Lemma 8.3.

1

n

n∑

i=1

exp

(
−Yi

K∑

k=1

αkgk(Xi)

)
=

K∏

k=1

2
√
ek(1− ek).(8.21)

Proof. From the form of the AdaBoost weight update rule (8.18), we see that, for any
i ∈ [n] and any k ∈ [K],

exp (−αkYigk(Xi)) =
w

(k+1)
i

w
(k)
i

Zk.(8.22)

93

Therefore,

exp

(
−Yi

K∑

k=1

αkgk(Xi)

)
=

K∏

k=1

exp (−αkYigk(Xi))

=
K∏

k=1

w
(k+1)
i

w
(k)
i

Zk

=
w

(K+1)
i

w
(1)
i

K∏

k=1

Zk

= nw
(K+1)
i

K∏

k=1

Zk.

Averaging this over i gives

1

n

n∑

i=1

exp

(
−Yi

K∑

k=1

αkgk(Xi)

)
=

K∏

k=1

Zk

n∑

i=1

w
(K+1)
i

=
K∏

k=1

Zk.

The proof will be complete once we show that Zk = 2
√
ek(1− ek) for each k. But this is

rather simple:

Zk =
n∑

i=1

w
(k)
i exp (−Yiαkgk(Xi))

= eαk
n∑

i=1

w
(k)
i 1{Yi 6=gk(Xi)} + e−αk

n∑

i=1

w
(k)
i 1{Yi=gk(Xi)}

= eαkek + e−αk(1− ek)
= 2
√
ek(1− ek),

where we have used (8.19) and the definition of αk. �

We can now state a performance guarantee for AdaBoost due to Koltchinskii and Panchenko
[KP02], who improved upon the results of Schapire et al. [SFBL98]:

Theorem 8.6. With probability at least 1− δ, the classifier f̂n generated by K iterations
of AdaBoost satisfies

L(f̂n) ≤
K∏

k=1

2
√
ek(1− ek) + 8

(
1 ∨ log

K∏

k=1

√
1− ek
ek

)
ERn(G(Xn))

+

√√√√ 1

n
log log2

(
2

(
1 ∨ log

K∏

k=1

√
1− ek
ek

))
+

√
log(1/δ)

2n
.(8.23)

94

Proof. Let ϕ : Rd → [0, 1] be a penalty function which is Lipschitz-continuous with
constant 1 and satisfies (8.11) and the additional condition ϕ(u) ≤ eu. For example, we
could take ϕ(u) = 1 ∧ eu. Define the data dependent constant γ by

γ := 1 ∧ 1∑K
k=1 αk

.

Then, since f̂n ∈ conv(G) and Rn(conv(G)(Xn)) = Rn(G(Xn)), Theorem 8.4 guarantees that,
with probability at least 1− δ,

L(f̂n) ≤ Aϕ(·/γ),n(f̂n) +
8

γ
ERn(G(Xn)) +

√
log log2(2/γ)

n
+

√
log(1/δ)

2n
.(8.24)

Now, from the definition of γ and the assumption that ϕ(u) ≤ eu, it follows that, for any
i ∈ [n],

ϕ

(
−Yif̂n(Xi)

γ

)
≤ ϕ

(
−Yi

K∑

k=1

αkgk(Xi)

)

≤ exp

(
−Yi

K∑

k=1

αkgk(Xi)

)
.

Using this together with Lemma 8.3 gives

Aϕ(·/γ),n(f̂n) ≤ 1

n

n∑

i=1

exp

(
−Yi

K∑

k=1

αkgk(Xi)

)
≤

K∏

k=1

2
√
ek(1− ek).

Moreover,

1

γ
= 1 ∨

(
K∑

k=1

αk

)
= 1 ∨

(
K∏

k=1

log

√
1− ek
ek

)
.

Using these in (8.24), we see that (8.23) holds with probability at least 1− δ. �

8.5. Neural nets

The basic theorem for classification based on surrogate loss, Theorem 8.2, gives a perfor-
mance guarantee for classifiers of the form ŷ = sgn f(x) in terms of the expected Rademacher
average ERn(F(Xn)), which depends on the distribution of the X’s and the class of functions
F. In this section we consider classes of functions F of the form arising in neural networks,
and provide bounds on ERn(F(Xn)). We begin by considering linear functions, of the form
f(x) = 〈w, x〉, where both the feature vector x and the classifier weight vector w are elements
of Rd.

Let F be the collection of all such classifiers satisfying the norm constraint ‖w‖ ≤ B:

F := {〈w, ·〉 : ‖w‖ ≤ B} .
95

Then, for any realization of X1, . . . , Xn,

Rn(F(Xn)) =
1

n
Eεn

[
sup

w∈Rd: ‖w‖≤B

∣∣∣∣∣
n∑

i=1

εi〈w,Xi〉
∣∣∣∣∣

]

=
1

n
Eεn

[
sup
‖w‖≤B

∣∣∣∣∣

〈
w,

n∑

i=1

εiXi

〉∣∣∣∣∣

]

=
B

n
Eεn

∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥

≤ B

n
·

√√√√
n∑

i=1

‖Xi‖2,

where the third step is by the Cauchy–Schwarz inequality, and the last step follows from the
following calculation: for any collection of vectors v1, . . . , vn ∈ Rd,

Eεn

∥∥∥∥∥
n∑

i=1

εivi

∥∥∥∥∥ = Eεn

√√√√
n∑

i=1

n∑

j=1

εiεj〈vi, vj〉

≤

√√√√Eεn

[
n∑

i=1

n∑

j=1

εiεj〈vi, vj〉
]

=

√√√√
n∑

i=1

‖vi‖2,

where we have used Jensen’s inequality and the fact that, by independence of the εi’s,
E[εiεj] = 1{i=j}. In particular, if the common distribution of the Xi’s is supported on the
radius-R ball centered at the origin, then

ERn(F(Xn)) ≤ BR√
n
.(8.25)

Note that this bound is completely dimension-free, in contrast to the bound derived in
Section 8.1.1, namely, that for a family of Dudley classifiers with dimension m, Theorem 8.1
holds with V (C) = m. This is due to the fact the latter was obtained under no restrictions
on either the classifier weight vector or the feature vector.

Using the contraction principle, we can also cover the case of nonlinear classifiers of the
form

f(x) = σ(〈w, x〉),(8.26)

96

where, as before, ‖w‖ ≤ B, and σ : R → R is a fixed Lipschitz-continuous function with
Lipschitz constant L that satisfies σ(0) = 0. Then

Rn(F(Xn)) =
1

n
Eεn

[
sup
‖w‖≤B

∣∣∣∣∣
n∑

i=1

εiσ(〈w,Xi〉)
∣∣∣∣∣

]

≤ 2L

n
· Eεn

[
sup
‖w‖≤B

∣∣∣∣∣
n∑

i=1

εi〈w,Xi〉
∣∣∣∣∣

]

≤ 2LB

n
·

√√√√
n∑

i=1

‖Xi‖2.

Again, the bound is dimension-free — it depends only on the Lipschitz constant of σ and
on the maximal `2 norm of the weight w. If the features X1, . . . , Xn are each supported on
a ball of radius R, then

ERn(F(Xn)) ≤ 2LBR√
n

.

The classifier in Eq. (8.26) is a basic building block of neural nets. In a very rough analogy
with biological neurons, its output is a nonlinear function of some linear combination of its
inputs. The nonlinearity σ : R→ R is known as the activation function.

Next we consider feedforward neural networks. First, given a nonlinearity σ : R → R
and a vector w ∈ Rm for some m, define the function Nσ,w : Rm → R by

Nσ,w(u1, . . . , um) := σ

(
m∑

j=1

wjuj

)
,

and denote Nσ,w composed with m real-valued functions (hk)1≤k≤m on Rd by
[
Nσ,w ◦ (h1, . . . , hm)

]
(x) := Nσ,w (h1(x), . . . , hm(x))

= σ

(
m∑

j=1

wjhj(x)

)
.

Let G be a family of base classifiers g : X → R, where X is a subset of Rd. For ` ≥ 1,
let σ1, . . . , σ` : R → R be a sequence of nonlinearities, such that, for each j ∈ [`], σj is
Lipschitz-continuous with Lipschitz constant Lj, and σj(0) = 0. Finally, let a sequence of
positive reals B1, . . . , B` be given. We then define function classes F0,F1, . . . ,F` recursively
as follows:

F0 := G,

and, for 1 ≤ j ≤ `,

Fj :=
{
Nσj ,w ◦ (f1, . . . , fm) : m ∈ N; |w1|+ . . .+ |wm| ≤ Bj; f1, . . . , fm ∈ Fj−1

}
.

97

In other words, the functions in F1 are of the form

f(x) = σ1

(
m∑

j=1

wjgj(x)

)

for all m ∈ N, all vectors w ∈ Rm satisfying ‖w‖1 := |w1|+ . . .+ |wm| ≤ B1, and all choices
of base classifiers g1, . . . , gm ∈ G; the functions in F2 are all functions of the form

f(x) = σ2

(
m∑

j=1

wjfj(x)

)
,

for all m ∈ N, all w ∈ Rm satisfying ‖w‖1 ≤ B2, and all choices of f1, . . . , fm ∈ F1; and so
on. The integer ` is called the number of layers.

Now let us upper-bound the Rademacher average ERn(F`(X
n)). To that end, we first

observe the following structural property:

Fj = σj ◦ (Bj · absconv(Fj−1)) .(8.27)

In other words, each fj ∈ Fj has the form σj ◦ f̃j for some f̃j ∈ Bj · absconv(Fj−1). Armed
with this, we start at the last (i.e., `th) layer and proceed recursively. Since
F` = σ`◦(B` ·absconv(F`−1)), the same holds for the families of vectors obtained by applying
the families of functions to the n data samples, Xn. Therefore,

Rn(F`(X
n)) = Rn(σ` ◦ (B` · absconv(F`−1(Xn))))

≤ 2L` ·Rn(B` · absconv(F`−1(Xn)))

= 2L`B` ·Rn(F`−1(Xn)),

where the second line uses the contraction principle, and the last line uses the properties of
Rademacher averages. Thus, we have “peeled off” the last layer. Proceeding inductively, we
arrive at the bound

Rn(F`(X
n)) ≤

∏̀

j=1

(2LjBj) ·Rn(G(Xn)).(8.28)

Apart from the Rademacher average of the “base” class G, the bound (8.28) involves only
the number of layers `, the Lipschitz constants L1, . . . , L` of the activation functions in each
layer, and the weight constraints B1, . . . , Bn. In particular, the number of neurons does
not appear explicitly anywhere in the bound. The first bound of this sort was obtained
by Bartlett [Bar98] (see also [BM02]). The bound in (8.28) is due to Koltchinskii and
Panchenko [KP02]. However, observe that, by invoking the contraction principle, we gain

a factor of 2 at each layer. Thus, the bound is very loose unless
∏`

j=1(LjBj) ≤ 2−`, which is

quite a tall order — for example, for the so-called rectified linear unit (or ReLU) activation

function σ(u) := u ∨ 0, then Lj = 1 for all j, and therefore we must have
∏`

j=1Bj ≤ 2−`.
Deep neural nets, i.e., neural nets with ` very large, have become popular recently due

to their remarkable empirical performance in a variety of domains, such as computer vision,
speech processing, and natural language processing. However, theoretical understanding
of their performance is still incomplete. One worrisome issue is the explicit exponential
dependence of the bound (8.28) on the number of layers. Bartlett, Foster, and Telgarsky

98

[BFT17] have removed this dependence using rather delicate recursive covering number
estimates. In a more recent paper, Golowich, Rakhlin, and Shamir [GRS17] showed that

the factor of 2` can be reduced to
√
` using a simple but effective log-exp device. In order

to state and prove their result, we need two technical lemmas:

Lemma 8.4 ([GRS17]). Let F and F′ be two classes of real-valued functions on X, such
that

F = σ ◦ (B · absconv(F′))(8.29)

for some Lipschitz-continuous nonlinearity σ : R → R satisfying σ(0) = 0. Let G : R → R
be a convex nondecreasing function. Then

Eεn

[
sup
f∈F

G

(∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)]
≤ 2 · Eεn

[
sup
f ′∈F′

G

(
LB ·

∣∣∣∣∣
n∑

i=1

εif
′(Xi)

∣∣∣∣∣

)]
,(8.30)

where L is the Lipschitz constant of σ.

Proof. Since G is nondecreasing, G(|u|) = G(u ∨ (−u)) ≤ G(u) +G(−u). Then

Eεn

[
sup
f∈F

G

(∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)]

≤ Eεn

[
sup
f∈F

G

(
n∑

i=1

εif(Xi)

)]
+ Eεn

[
sup
f∈F

G

(
−

n∑

i=1

εif(Xi)

)]

= 2 · Eεn

[
sup
f∈F

G

(
n∑

i=1

εif(Xi)

)]
,(8.31)

where the last step uses the fact that Rademacher random variables are symmetric. We now
invoke the following generalization of the contraction principle (see [LT91, Eq. (4.20)]): For
any A ⊂ Rn and for G, σ satisfying the conditions of the lemma,

Eεn

[
sup
a∈A

G

(
n∑

i=1

εiσ(ai)

)]
≤ Eεn

[
sup
a∈A

G

(
L ·

n∑

i=1

εiai

)]
,(8.32)

where L is the Lipschitz constant of σ. Now, by (8.29), any f ∈ F has the form f = σ ◦ f̃
for some f̃ ∈ B · absconv(F′). Using this fact together with (8.32), we get

Eεn

[
sup
f∈F

G

(
n∑

i=1

εif(Xi)

)]
≤ Eεn

[
sup

f̃∈B·absconv(F′)

G

(
L ·

n∑

i=1

εif̃(Xi)

)]
.(8.33)

Now, by Hölder’s inequality and by the monotonicity of G,

sup
f̃∈B·absconv(F′)

G

(
L ·

n∑

i=1

εif̃(Xi)

)
≤ sup

f ′∈F′
G

(
LB ·

∣∣∣∣∣
n∑

i=1

εif
′(Xi)

∣∣∣∣∣

)
.(8.34)

Combining Eqs. (8.31), (8.33), and (8.34), we get (8.30). �

99

Lemma 8.5. Let A be a bounded subset of Rn. Then, for any λ > 0,

Eεn

[
exp

(
λ sup
a∈A

∣∣∣∣∣
n∑

i=1

εiai

∣∣∣∣∣

)]
≤ exp

(
λ2

2

n∑

i=1

sup
a∈A
|ai|2

)
exp (λnRn(A)) .(8.35)

Proof. The random variable U := supa∈A |
∑n

i=1 εiai| is a deterministic function of
ε1, . . . , εn, and, for each i,

U(ε1, . . . , εi, . . . , εn)− U(ε1, . . . ,−εi, . . . , εn) ≤ 2 sup
a∈A
|ai|.

Thus, mimicking the proof of McDiarmid’s inequality, we arrive at

E[eλU] = eλEUE[eλ(U−EU)]

≤ eλEU · exp

(
λ2

2

n∑

i=1

sup
a∈A
|ai|2

)
.

�

We are now ready to prove the following result, due to Golowich, Rakhlin, and Shamir
[GRS17]:

Theorem 8.7. For any realization X1, . . . , Xn,

Rn(F`(X
n)) ≤

∏̀

j=1

(LjBj) ·

Rn(G(Xn)) +

2

n

√√√√` log 2 ·
n∑

i=1

sup
g∈G
|g(Xi)|2

 .(8.36)

Proof. Fix some λ > 0. Then

Rn(F`(X
n)) =

1

n
Eεn

[
sup
f∈F`

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

]

=
1

λn
Eεn

[
log exp sup

f∈F`
λ

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

]

≤ 1

λn
log Eεn

[
sup
f∈F`

exp

(
λ

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)]
,(8.37)

where the last step is by Jensen’s inequality. Now let G(u) := eλu. Then, taking into account
(8.27) and invoking Lemma 8.4, we can write

Eεn

[
sup
f∈F`

exp

(
λ

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)]

≤ 2 · Eεn

[
sup

f∈F`−1

exp

(
λL`B` ·

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)]
.

100

Continuing inductively in this manner, we arrive at

Eεn

[
sup
f∈F`

exp

(
λ

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

)]

≤ 2` · Eεn

[
exp

(
λ
∏̀

j=1

(LjBj) · sup
g∈G

∣∣∣∣∣
n∑

i=1

εig(Xi)

∣∣∣∣∣

)]
.(8.38)

Substutiting (8.38) into (8.37), we have

Rn(F`(X
n)) ≤ 1

λn

{
` · log 2 + log Eεn

[
exp

(
λ
∏̀

j=1

(LjBj) · sup
g∈G

∣∣∣∣∣
n∑

i=1

εig(Xi)

∣∣∣∣∣

)]}
.(8.39)

Let M :=
∏`

j=1(LjBj). Then, by Lemma 8.5,

Eεn

[
exp

(
λ
∏̀

j=1

(LjBj) · sup
g∈G

∣∣∣∣∣
n∑

i=1

εig(Xi)

∣∣∣∣∣

)]

≤ exp

(
λ2M2

2

n∑

i=1

sup
g∈G
|g(Xi)|2

)
exp (MλnRn(G(Xn))) .(8.40)

Using (8.40) iin (8.39), we get

Rn(F`(X
n)) ≤ 1

λn

{
` log 2 +

λ2M2

2

n∑

i=1

sup
g∈G
|g(Xi)|2 +MλnRn(G(Xn))

}

= MRn(G(Xn)) +
` log 2

λn
+
λM2

2n

n∑

i=1

sup
g∈G
|g(Xi)|2.

Using the identity

inf
λ≥0

{a
λ

+ bλ
}

= 2
√
ab

for a, b ≥ 0, we finally obtain

Rn(F(Xn)) ≤MRn(G(Xn)) +
2M

n

√√√√` log 2 ·
n∑

i=1

sup
g∈G
|g(Xi)|2.

�

8.6. Kernel machines

As we have seen, a powerful way of building complex classifiers from simple ones is by
using functions that are linear combinations of simple functions. The norms induced by
kernels, as described in Chapter 4, offer an effective way to control the complexity of the
linear combinations. Kernel methods are popular in machine learning for a variety of reasons,
not the least of which is that any algorithm that operates in a Euclidean space and relies
only on the computation of inner products between feature vectors can be modified to work
with any suitably well-behaved kernel.

101

Let us describe empirical risk minimization in an RKHS. Pick a kernel K on our feature
space X, where X is a closed subset of Rd, and consider classifiers of the form

gf (x) = sgn f(x) ≡
{

1, if f(x) ≥ 0

−1, otherwise

with the underlying f taken from a suitable subset of the RKHS HK . One choice, which
underlies such things as the Support Vector Machine, is to take a ball in HK : given some
λ > 0, let

Fλ := {f ∈ HK : ‖f‖K ≤ λ} .
This set is the closure (in the ‖ · ‖K norm) of the convex set
{

N∑

j=1

cjKxj : N ∈ N; c1, . . . , cN ∈ R;x1, . . . , xN ∈ X;
N∑

i,j=1

cicjK(xi, xj) ≤ λ2

}
⊂ LK(X),

and is itself convex.
As we already know, the performance of any learning algorithm that chooses an element

f̂n ∈ Fλ in a data-dependent way is controlled by the Rademacher average Rn(Fλ(X
n)).

An advantage of using kernels is that this Rademacher average can be estimated using one
of the bounds in the following proposition (in this section we use the second bound in the
proposition):

Proposition 8.1. (i) Let CK =
√

supx∈X K(x, x). For any x1, . . . , xn ∈ X,

Rn(Fλ(x
n)) ≤ CKλ√

n
.(8.41)

(ii) Suppose X1, . . . , Xn are independent, and each having the distribution of a random vari-
able X with values in X. Then

ERn(Fλ(X
n)) ≤ λ

√
EK(X,X)√

n
.(8.42)

Proof. By the reproducing kernel property (4.13) and then the linearity of the inner
product 〈·, ·〉K ,

Rn(Fλ(x
n)) =

1

n
Eεn sup

f :‖f‖K≤λ

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣

=
1

n
Eεn sup

f :‖f‖K≤λ

∣∣∣∣∣
n∑

i=1

εi〈f,Kxi〉K

∣∣∣∣∣

=
1

n
Eεn sup

f :‖f‖K≤λ

∣∣∣∣∣

〈
f,

n∑

i=1

εiKxi

〉

K

∣∣∣∣∣

Using the Cauchy–Schwarz inequality (4.2), it is not hard to show that

sup
f :‖f‖K≤λ

|〈f, g〉K | = λ‖g‖K

102

for any g ∈ HK . Therefore,

Rn(Fλ(x
n)) =

λ

n
Eεn

∥∥∥∥∥
n∑

i=1

εiKxi

∥∥∥∥∥
K

.

Next we prove that for any n functions g1, . . . , gn ∈ HK ,

Eεn

∥∥∥∥∥
n∑

i=1

εigi

∥∥∥∥∥
K

≤

√√√√
n∑

i=1

‖gi‖2
K .(8.43)

The proof is in two steps: First, by concavity of the square root and Jensen’s inequality:

Eεn

√√√√
∥∥∥∥∥

n∑

i=1

εigi

∥∥∥∥∥

2

K

≤

√√√√E

∥∥∥∥∥
n∑

i=1

εigi

∥∥∥∥∥

2

K

.

Then we expand the squared norm:
∥∥∥∥∥

n∑

i=1

εigi

∥∥∥∥∥

2

K

=

〈
n∑

i=1

εigi,
n∑

i=1

εigi

〉

K

=
n∑

i,j=1

εiεj〈gi, gj〉K .

And finally we take the expectation over εn and use the fact that E[εiεj] = 1 if i = j and 0
otherwise to get

E

∥∥∥∥∥
n∑

i=1

εigi

∥∥∥∥∥

2

K

=
n∑

i=1

〈gi, gi〉K =
n∑

i=1

‖gi‖2
K .

Hence, we obtain

Rn(Fλ(x
n)) ≤ λ

n

√√√√
n∑

i=1

〈Kxi , Kxi〉K =
λ

n

√√√√
n∑

i=1

K(xi, xi).(8.44)

Equation (8.41) follows from (8.44). Replacing xi by Xi in (8.44) for each i, taking the
expectation w.r.t. Xn over each side, and once more using concavity of the square root and
Jensen’s inequality, yields (8.42). �

Remark 8.3. If K(x, y) = 〈x, y〉 then HK consists of functions of the form f(x) = 〈w, x〉,
and ‖f‖2

K = ‖w‖2. Hence, (8.42) implies (8.25).

With the bound (8.42) in hand, we can specialize Theorem 8.2 to get the following more
explicit bound.

Corollary 8.2. (Performance bound for RKHS using surrogate loss) Suppose Fλ is the
closed ball of radius λ > 0 in an RKHS of functions on a closed set X ⊂ Rd with associated
Mercer kernal K. Let ϕ be any penalty function such that ϕ(x) ≥ min{1, (1 + x)+}, i.e. , ϕ
is greater than or equal to the ramp penalty function. Then
(Single version) For any n and δ ∈ (0, 1), and any learning algorithm, the following bound
holds with probability at least 1− δ :

L(f̂n) ≤ Aϕ,n(f̂n) + 4λ

√
E [K(X,X)]

n
+

√
log(1/δ)

2n
(8.45)

103

(Double version) For any n and δ ∈ (0, 1), and for the ERM algorithm for surrogate loss,
the following bound holds with probability at least 1− δ :

L(f̂n) ≤ A∗ϕ(Fλ) + 8λ

√
E [K(X,X)]

n
+

√
2 log(1/δ)

n
(8.46)

Proof. Theorem 8.2 and (8.42) imply (8.45) and (8.46) in case ϕ is the ramp penalty
function, because the ramp penalty function is 1−Lipschitz continuous and takes values in
[0, 1]. Therefore (8.45) and (8.46) hold for any choice of ϕ that is greater than or equal to
the ramp penalty function, because the right-hand sides are increasing in ϕ (in the pointwise
ordering of functions on R. �

Another advantage of working with kernels is that, in many cases, a minimizer of empirical
risk over a sufficiently regular subset of an RKHS will have the form of a linear combination
of kernels centered at the training feature points. The results ensuring this are often referred
to in the literature as representer theorems. Here is one such result (due, in a slightly different
form, to Schölkopf, Herbrich, and Smola [SHS01]), sufficiently general for our purposes:

Theorem 8.8 (The generalized representer theorem). Let X be a closed subset of Rd and
let Y be a subset of the reals. Consider a nonnegative loss function ` : Y × Y → R+. Let K
be a Mercer kernel on X, and let HK be the corresponding RKHS.

Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample from some distribution P = PXY on X×Y,
let Hn be the closed linear subspace of HK spanned by {KXi : 1 ≤ i ≤ n}, and let Πn denote
the orthogonal projection onto Hn. Let F be a subset of HK, such that Πn(F) ⊆ F. Then

inf
f∈F

1

n

n∑

i=1

`(Yi, f(Xi)) = inf
f∈Πn(F)

1

n

n∑

i=1

`(Yi, f(Xi)),(8.47)

and if a minimizer of the left-hand side of (8.47) exists, then it can be taken to have the
form

f̂n =
n∑

i=1

ciKXi(8.48)

for some c1, . . . , cn ∈ R.

Remark 8.4. Note that both the subspace Hn and the corresponding orthogonal pro-
jection Πn are random objects, since they depend on the random features Xn.

Proof. Since KXi ∈ Hn for every i, by Proposition 4.1 we have

〈f,KXi〉K = 〈Πnf,KXi〉K , ∀f ∈ HK .

Moreover, from the reproducing kernel property (4.13) we deduce that

f(Xi) = 〈f,KXi〉K = 〈Πnf,KXi〉K = Πnf(Xi).

Therefore, for every f ∈ F we can write

1

n

n∑

i=1

`(Yi, f(Xi)) =
1

n

n∑

i=1

` (Yi,Πnf(Xi)) .

104

This implies that

inf
f∈F

1

n

n∑

i=1

`(Yi, f(Xi)) = inf
f∈F

1

n

n∑

i=1

` (Yi,Πnf(Xi)) = inf
g∈Πn(F)

1

n

n∑

i=1

`(Yi, g(Xi)).(8.49)

Now suppose that fn ∈ F achieves the infimum on the left-hand side of (8.49). Then its

projection f̂n = Πnfn onto Hn achieves the infimum on the right-hand side. Moreover, since

Πn(F) ⊆ F by hypothesis, we may conclude that f̂n ∈ Hn. Since every element of Hn has
the form (8.48), the theorem is proved. �

We now discuss how the representer theorem leads to a computationally efficient ERM
algorithm in the classification setting. Consider Y = {−1, 1}, a penalty function ϕ, and
classifiers of the form g(x) = sgn(f(x)) for predictors f in some family of real-valued functions
F. The empirical ϕ risk is given by

Aϕ,n(f) =
1

n

n∑

i=1

ϕ(−Yif(Xi)).

Suppose the predictors are taken from F = HK , the RKHS generated by some Mercer kernel
K. The ERM optimization problem using surrogate loss for a penalty function ϕ and the
RKHS norm for regularization can be formulated as a constrained problem:

min
f∈HK

1

n

n∑

i=1

ϕ(−Yif(Xi)) subject to: ‖f‖K ≤ λ,(8.50)

or as a closely related unconstrained problem with an additive regularization term:

min
f∈HK

1

n

n∑

i=1

ϕ(−Yif(Xi)) + τ‖f‖2
K .(8.51)

Then by the representer theorem, in seeking the ERM defined by (8.50) or the ERM de-

fined by (8.51), we can assume without loss of generality that f̂n ∈ Hn , span(KX1 , . . . , KXn).
In other words,

f̂n(·) =
n∑

j=1

cjKXj(·) =
n∑

j=1

cjK(·, Xj).

A solution to the constrained ERM problem (8.50) can be found by solving

min
c∈Rn

1

n

n∑

i=1

ϕ

(
−Yi

n∑

j=1

cjK(Xi, Xj)

)
subject to:

n∑

i,j=1

cicjK(Xi, Xj) ≤ λ2,(8.52)

and a solution to the unconstrained regularized ERM problem (8.51) can be found by solving

min
c∈Rn

{
1

n

n∑

i=1

ϕ

(
−Yi

n∑

j=1

cjK(Xi, Xj)

)
+ τ

n∑

i,j=1

cicjK(Xi, Xj)

}
.(8.53)

There are n variables involved in either the minimization problem (8.52) or (8.53), where n
is the number of labeled data samples. Here n can be much smaller than the dimension of
the space HK of classifiers used, which could even be infinite. The reduction to n variables is
achieved through the use of the representer theorem. Moreover, if ϕ is a convex function, such

105

as ϕ(x) = (1 + x)+, then (8.50) has a convex objective function and quadratic constraints,
and (8.53) has a convex objective function, allowing for efficient numerical solution methods
such as interior point algorithms. For detailed background of such algorithms see the text
of Boyd and Vandenberghe [BV04].

An alternative way to go about solving (8.50) or (8.51) is to use a basis that does not
depend on the data. Recall from Section 4.3 that if the kernel K has the Mercer expansion

K(x, x′) =
∑

iwiψ̃i(x)ψ̃i(x
′), then the RKHS norm of a function f(x) =

∑
j ajψ̃j(x) satisfies

‖f‖2
K =

∑
j a

2
j/wj. Inserting this expression for f into the ERM minimization problems

(8.50) and (8.51) result in the following constrained ERM minimization problem

min
a

1

n

n∑

i=1

ϕ

(
−Yi

∑

j

ajψ̃j(Xi)

)
subject to:

∑

j

a2
j/wj ≤ λ2,(8.54)

and the related unconstrained problem with additive regularization term:

min
a

1

n

n∑

i=1

ϕ

(
−Yi

∑

j

ajψ̃j(Xi)

)
+ τ

∑

j

a2
j/wj.(8.55)

Thus, (8.54) and (8.55) are equivalent to (8.50) and (8.51), up to a change in coordinates.
Note that the dimension of the vector (aj) sought in the optimization problems (8.54) and

(8.55) does not depend on the number of samples. The dimension of a could be much smaller
than the number of samples, for example if d linear functions are used on X = Rd and the
number of samples is much larger than d. Or the dimension of a could be very large compared
to n, or even infinite. In such cases, the optimization problems (8.52) and (8.53) derived
from the representer theorem would seem more efficient. However, even if there is a very
large number of basis functions, or even infinitely many basis functions, in the representation
of K as a series, in practice, only the ten to thirty most heavily weighted basis functions
would typically play a role in the performance of a classifier. Thus, in practice, there is often
a smaller difference between using basis functions of the form Kx for a Mercer kernel as in
(8.52) and (8.53), and directly using basis functions ψj as in (8.54) and (8.55).

8.7. Convex risk minimization

Choosing a convex penalty function ϕ has many advantages in general. First of all, we
may arrange things in such a way that the function f ∗ that minimizes the surrogate loss
Aϕ(f) over all measurable f : X→ R induces the Bayes classifier:

sgn f ∗(x) ≡
{

1, if η(x) > 1/2

−1, otherwise
(8.56)

Theorem 8.9. Let P = PXY be the joint distribution of the feature X ∈ Rd and the
binary label Y ∈ {−1,+1}, and let η(x) = P[Y = 1|X = x] be the corresponding regression
function. Consider a penalty function ϕ, which is strictly convex and differentiable. Then
the unique minimizer of the surrogate loss Aϕ(f) = E[ϕ(−Y f(X))] over all (measurable)
functions f : X→ R has the form

f ∗(x) = arg min
u∈R

hη(x)(u),

106

where for each η ∈ [0, 1] we have hη(u) := ηϕ(−u) + (1−η)ϕ(u). Moreover, f ∗(x) is positive
if and only if η(x) > 1/2, i.e, the induced sign classifier gf∗(x) = sgn(f ∗(x)) is the Bayes
classifier (1.2).

Proof. By the law of iterated expectation,

Aϕ(f) = E [ϕ(−Y f(X))] = E[E[ϕ(−Y f(X))|X]].

Hence,

inf
f
Aϕ(f) = inf

f
E [E [ϕ(−Y f(X))|X]]

= E

[
inf
u∈R

E[ϕ(−Y u)|X = x]

]
.

For every x ∈ X, we have

E[ϕ(−Y u)|X = x] = P[Y = 1|X = x]ϕ(−u) + P[Y = −1|X = x]ϕ(u)

= η(x)ϕ(−u) + (1− η(x))ϕ(u)

≡ hη(x)(u).

Since ϕ is strictly convex and differentiable, so is hη for every η ∈ [0, 1]. Therefore,
infu∈R hη(u) exists, and is achieved by a unique u∗; in particular,

f ∗(x) = arg min
u∈R

hη(x)(u).

To find the u∗ minimizing hη, we differentiate hη w.r.t. u and set the derivative to zero. Since

h′η(u) = −ηϕ′(−u) + (1− η)ϕ′(u),

the point of minimum u∗ is the solution to the equation

ϕ′(u)

ϕ′(−u)
=

η

1− η .

Suppose η > 1/2; then

ϕ′(u)

ϕ′(−u)
> 1.

Since ϕ is strictly convex, its derivative ϕ′ is strictly increasing. Hence, u∗ > −u∗ which
implies that u∗ > 0. Conversely, if u∗ ≤ 0, then u∗ ≤ −u∗, so ϕ′(u∗) ≤ ϕ′(−u∗), which means
that η/(1 − η) ≤ 1, i.e., η ≤ 1/2. Thus, we conclude that f ∗(x), which is the minimizer of
hη(x), is positive if and only if η(x) > 1/2, i.e., sgn(f ∗(x)) is the Bayes classifier. �

Secondly, under some additional regularity conditions it is possible to relate the minimum
surrogate loss

A∗ϕ := inf
f
Aϕ(f)

to the Bayes rate

L∗ = inf
f

P(Y 6= sgn f(X)),

where in both expressions the infimum is over all measurable functions f : X→ R:

107

Theorem 8.10. Assume that the penalty function ϕ satisfies the usual conditions of our
basic surrogate bound, and that there exist positive constants s ≥ 1 and c, such that the
inequality

L(f)− L∗ ≤ c
(
Aϕ(f)− A∗ϕ

)1/s
(8.57)

holds for any measurable function f : X→ R. Consider the learning algorithm that minimizes
empirical surrogate risk over some class F:

f̂n = arg min
f∈F

Aϕ,n(f) = arg min
f∈F

1

n

n∑

i=1

ϕ(−Yif(Xi)).(8.58)

Then

L(f̂n)− L∗ ≤ 21/sc

(
4MϕERn(F(Xn)) +B

√
log(1/δ)

2n

)1/s

+ c

(
inf
f∈F

Aϕ(f)− A∗ϕ
)1/s

(8.59)

with probability at least 1− δ.

Proof. We have the following:

L(f̂n)− L∗ ≤ c
(
Aϕ(f̂n)− A∗ϕ

)1/s

(8.60)

= c

(
Aϕ(f̂n)− inf

f∈F
Aϕ(f) + inf

f∈F
Aϕ(f)− A∗ϕ

)1/s

(8.61)

≤ c

(
Aϕ(f̂n)− inf

f∈F
Aϕ(f)

)1/s

+ c

(
inf
f∈F

Aϕ(f)− A∗ϕ
)1/s

(8.62)

≤ 21/sc

(
sup
f∈F
|Aϕ,n(f)− Aϕ(f)|

)1/s

+ c

(
inf
f∈F

Aϕ(f)− A∗ϕ
)1/s

(8.63)

≤ 21/sc

(
4MϕERn(F(Xn)) +B

√
log(1/δ)

2n

)1/s

+ c

(
inf
f∈F

Aϕ(f)− A∗ϕ
)1/s

w.p. ≥ 1− δ,(8.64)

where:

• (8.60) follows from (8.57);
• (8.62) follows from the inequality (a + b)1/s ≤ a1/s + b1/s that holds for all a, b ≥ 0

and all s ≥ 1
• (8.63) and (8.64) follow from the same argument as the one used in the proof of the

basic surrogate bound.

This completes the proof. �

108

Remark 8.5. Condition (8.57) is often easy to check. For instance, Zhang [Zha04]
proved that it is satisfied, provided the inequality∣∣∣∣

1

2
− η
∣∣∣∣
s

≤ (2c)s
(

1− inf
u
hη(u)

)
(8.65)

holds for all η ∈ [0, 1]. For instance, (8.65) holds for the exponential loss ϕ(u) = eu and the
logit loss ϕ(u) = log2(1 + eu) with s = 2 and c = 2

√
2; for the hinge loss ϕ(u) = (u + 1)+,

(8.65) holds with s = 1 and c = 4.

What Theorem 8.10 says is that, assuming the expected Rademacher average ERn(F(Xn)) =
O(1/

√
n), the difference between the generalization error of the Convex Risk Minimization

algorithm (8.58) and the Bayes rate L∗ is, with high probability, bounded by the combination
of two terms: the O(n−1/2s) “estimation error” term and the (inff∈F Aϕ(f)−A∗ϕ)1/s “approx-
imation error” term. If the hypothesis space F is rich enough, so that inff∈F Aϕ(f) = A∗ϕ,

then the difference between L(f̂n) and L∗ is, with high probability, bounded as O(1/n−2s),
independently of the dimension d of the feature space.

109

CHAPTER 9

Regression with quadratic loss

Regression with quadratic loss is another basic problem studied in statistical learning
theory. We have a random couple Z = (X, Y), where, X is an Rd-valued feature vector (or
input vector) and Y is the real-valued response (or output). We assume that the unknown
joint distribution P = PZ = PXY of (X, Y) belongs to some class P of probability distribu-
tions over Rd × R. The learning problem, then, is to produce a predictor of Y given X on
the basis of an i.i.d. training sample Zn = (Z1, . . . , Zn) = ((X1, Y1), . . . , (Xn, Yn)) from P .
A predictor is just a (measurable) function f : Rd → R, and we evaluate its performance by
the expected quadratic loss

L(f) := E[(Y − f(X))2].

As we have seen before, the smallest expected loss is achieved by the regression function
f ∗(x) := E[Y |X = x], i.e.,

L∗ := inf
f
L(f) = L(f ∗) = E[(Y − E[Y |X])2].

Moreover, for any other f we have

L(f) = L∗ + ‖f − f ∗‖2
L2(PX),

where

‖f − f ∗‖2
L2(PX) =

∫

Rd
|f(x)− f ∗(x)|2PX(dx).

An observation we have made many times by now is that when the joint distribution of
the input-output pair (X, Y) ∈ X × R is unknown, there is no hope in general to learn the
optimal predictor f ∗ from a finite training sample. So, as before, instead we aim to find a
good approximation to the best predictor in some class F of functions f : Rd → R, i.e., to

use the training data Zn to construct a predictor f̂n ∈ F, such that

L(f̂n) ≈ L∗(F) := inf
f∈F

L(f)

with high probability. Restricting our attention to some hypothesis space F, which is a
proper subset of the class of all measurable functions f : X → R, is a form of insurance: If
we do not do this, then we can find some function f that attains zero empirical risk (if no
two samples have same X but different Y ’s) , yet performs spectacularly badly on the inputs
outside the training set. When this happens, we say that our learned predictor overfits. If
F consists of well-behaved functions, then it is possible to learn a predictor that achieves a
graceful balance between in-sample data fit and out-of-sample generalization. The price we
pay is the approximation error

L∗(F)− L∗ ≡ inf
f∈F

L(f)− inf
f :X→R

L(f) ≥ 0.

110

In the regression setting with mean square error, the approximation error is given by:

L∗(F)− L∗ = inf
f∈F
‖f − f ∗‖2

PX
,

where f ∗(x) = E[Y |X = x] is the regression function (the MMSE predictor of Y given X).
We will assume that the marginal distribution PX of the feature vector is supported

on a closed subset X ⊆ Rd, and that the joint distribution P of (X, Y) is such that, with
probability one,

|Y | ≤M(9.1)

for some constant 0 < M <∞. Thus we can assume that the training samples belong to the
set Z = X× [−M,M]. We also assume that the class F is a subset of a suitable reproducing
kernel Hilbert space (RKHS) HK induced by some Mercer kernel K : X×X→ R, such that
CK , defined by

CK := sup
x∈X

√
K(x, x),(9.2)

is finite. By Lemma 4.1, for any f ∈ HK , ‖f‖∞ := supx∈X |f(x)| ≤ CK‖f‖K .

9.1. Constraint regularized least squares in RKHS

First, we will look at the simplest case: ERM over a ball in HK . Thus, we pick the radius
λ > 0 and take

F = Fλ = {f ∈ HK : ‖f‖K ≤ λ} .
We have introduced the inequality constraint ‖f‖K ≤ λ because in many cases, only assuming
f ∈ HK is not a strong enough regularization assumption. The ERM algorithm outputs the
predictor

f̂n = arg min
f∈Fλ

Ln(f) ≡ arg min
f∈Fλ

1

n

n∑

i=1

(Yi − f(Xi))
2,

where Ln(f) denotes, as usual, the empirical risk (in this case, empirical average quadratic
loss) of f .

Theorem 9.1. With probability at least 1− δ, the ERM algorithm output f̂ satisfies:

L(f̂n) ≤ L∗(Fλ) +
16(M + CKλ)2

√
n

+ (M2 + C2
Kλ

2)

√
8 log(1/δ)

n
(9.3)

Proof. First let us introduce some notation. Let us denote the quadratic loss function
(y, u) 7→ (y − u)2 by `(y, u), and for any f : Rd → R let

` • f(x, y) := `(y, f(x)) = (y − f(x))2

Let ` • Fλ denote the function class {` • f : f ∈ Fλ}.
111

Let f ∗λ denote any minimizer of L(f) over Fλ, i.e., L(f ∗λ) = L∗(Fλ). As usual, we write

L(f̂n)− L∗(Fλ) = L(f̂n)− L∗(Fλ)
= L(f̂n)− Ln(f̂n) + Ln(f̂n)− Ln(f ∗λ) + Ln(f ∗λ)− L(f ∗λ)

≤ 2 sup
f∈Fλ
|Ln(f)− L(f)|

= 2 sup
f∈Fλ
|Pn(` • f)− P (` • f)|

= 2∆n(` • Fλ),(9.4)

where we have defined the uniform deviation

∆n(` • Fλ) := sup
f∈Fλ
|Pn(` • f)− P (` • f)|.

Note that (9.4) can also be viewed as a consequence of the double version of the mismatched
minimization lemma, Lemma 5.1. Next we show that, as a function of the training sample
Zn, g(Zn) = ∆n(` • Fλ) has bounded differences. Indeed, for any 1 ≤ i ≤ n, any zn ∈ Zn,
and any z′i ∈ Z, let zn(i) denote zn with the ith coordinate replaced by z′i. Then

∣∣g(zn)− g(zn(i))
∣∣ ≤ 1

n
sup
f∈Fλ

∣∣(yi − f(xi))
2 − (y′i − f(x′i))

2
∣∣

≤ 1

n
sup
x∈X

sup
|y|≤M

sup
f∈Fλ
|y − f(x)|2

(a)

≤ 2

n

(
M2 + sup

f∈Fλ
‖f‖2

∞

)

(b)

≤ 2

n

(
M2 + C2

Kλ
2
)
,

where (a) holds by the fact (a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R, and (b) holds by Lemma 4.1.
Thus, ∆n(`•Fλ) has the bounded difference property with c1 = . . . = cn = 2(M2 +C2

Kλ
2)/n,

so McDiarmid’s inequality says that, for any t > 0,

P
(

∆n(` • Fλ) ≥ E∆n(` • Fλ) + t
)
≤ exp

(
− nt2

2(M2 + C2
Kλ

2)2

)
.

Therefore, letting

t = (M2 + C2
Kλ

2)

√
2 log(1/δ)

n
,

we see that

∆n(` • Fλ) ≤ E∆n(` • Fλ) + (M2 + C2
Kλ

2)

√
2 log(1/δ)

n
(9.5)

with probability at least 1− δ. Moreover, by symmetrization (i.e. Theorem 6.1), we have

E∆n(` • Fλ) ≤ 2ERn(` • Fλ(Zn)),(9.6)

112

where

Rn(` • Fλ(Zn)) =
1

n
Eεn

[
sup
f∈Fλ

∣∣∣∣∣
n∑

i=1

εi · ` • f(Zi)

∣∣∣∣∣

]

is the Rademacher average of the (random) set

` • Fλ(Zn) = {(` • f(Z1), . . . , ` • f(Zn)) : f ∈ Fλ}
=
{

((Y1 − f(X1)2), . . . , (Yn − f(Xn))2) : f ∈ Fλ
}
.

To bound the Rademacher average, we will use the contraction principle. To that end,
consider the function ϕ(t) = t2. For A > 0, |ϕ′(t)| ≤ 2A on the interval [−A,A], so ϕ is
Lipschitz continuous on [−A,A] with Lipschitz constant 2A, i.e.,

|s2 − t2| ≤ 2A|s− t|, −A ≤ s, t ≤ A.

The fact |Yi| ≤M and |f(Xi)| ≤ CKλ implies |Yi − f(Xi)| ≤M +CKλ for all 1 ≤ i ≤ n, so
taking A = M + CKλ and using the contraction principle yields:

Rn(` • Fλ(Zn)) ≤ 4(M + CKλ)

n
Eεn

[
sup
f∈Fλ

∣∣∣∣∣
n∑

i=1

εi (Yi − f(Xi))

∣∣∣∣∣

]
.(9.7)

Moreover

Eεn

[
sup
f∈Fλ

∣∣∣∣∣
n∑

i=1

εi (Yi − f(Xi))

∣∣∣∣∣

]
(a)

≤ Eεn

∣∣∣∣∣
n∑

i=1

εiYi

∣∣∣∣∣+ Eεn

[
sup
f∈Fλ

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣

]

(b)

≤

√√√√
n∑

i=1

Y 2
i + nRn(Fλ(X

n))

(c)

≤ (M + CKλ)
√
n,(9.8)

where (a) holds by the triangle inequality, (b) holds Jensen’s inequality and the definition
of Rademacher average, and (c) holds by the assumption |Y | ≤ M and the bound on the
Rademacher average for the projection of a ball in an RKHS onto a set of n samples, given
in Proposition 8.1.

Combining (9.5) through (9.8), we conclude that

∆n(` • Fλ) ≤
8(M + CKλ)2

√
n

+ (M2 + C2
Kλ

2)

√
2 log(1/δ)

n
(9.9)

with probability at least 1− δ. Finally, combining this with (9.4), we get (9.3). �

9.2. Penalty regularized least squares in an RKHS

The use of the constraint ‖f‖HK ≤ λ in the previous section is a form of regularization —
a way of guaranteeing that the learned predictor performs well outside the training sample.
This section illustrates a closely related method: penalty regularization. The idea is to use
an additive penalty term with some parameter γ in the cost function instead of the hard
constraint. To illustrate the method we derive a variation of Theorem 9.1. The learning
problem is denoted by (X = Rd,Y = [−M,M],P,F = HK , `(y, u) = (y − u)2) such that P is

113

a set of probability measures for random variables in Rd × R. We again consider predictors
f ∈ HK where HK is the RKHS generated by some Mercer kernel K. Given training data
Zn = ((X1, Y1), . . . , (Xn, Yn)) consisting of n independent labeled samples with distribution
P, a learning algorithm produces a predictor f ∈ HK . We use the following definitions.

• Generalization risk for predictor f : L(f) = E[(Y − f(X))2]
• Empirical risk for predictor f : Ln(f) = 1

n

∑n
i=1(Yi − f(Xi))

2

• Generalization regularized risk for predictor f : Jγ(f) = L(f) + γ‖f‖2
K

• Empirical regularized risk for predictor f : Jn,γ(f) = Ln(f) + γ‖f‖2
K

• Minimum risk for unconstrained predictors: L∗ = E[(Y − E[Y |X])2]
• Minimum regularized risk for class of predictors HK : J∗γ (HK) = inff∈HK Jγ(f)

• Increase in minimum risk due to regularization term: A(γ) , J∗γ (HK)− L∗
• Regularized ERM predictor: f̂n,γ = arg minf∈F Jn,γ(f).

Theorem 9.2. Consider the regression problem with quadratic loss, (X = Rd,Y =
[−M,M],P,F = HK , `(y, u) = (y− u)2), where HK is the RKHS generated by some Mercer
kernel K with CK <∞. For any δ ∈ (0, 1), with probability at least 1− δ,

L(f̂n.γ)− L∗ ≤ A(γ) +
16M2

(
1 + CK√

γ

)2

√
n

+M2

(
1 +

C2
K

γ

)√
8 log(1/δ)

n
.(9.10)

Proof. The infimum defining J∗γ (HK) can be restricted to f ∈ Fλ, where λ = M√
γ
, be-

cause if ‖f‖K > λ, then the identically zero predictor has a smaller regularized risk: Jγ(f) ≥
γ‖f‖2

K > M2 ≥ Jγ(0). For the same reason, the infimum defining the minimum regularized

empirical risk, Jγ,n(f), can also be restricted to Fλ. In particular, f̂n,γ = arg minf∈Fλ Jn,γ(f).

By the double version of the mismatched minimization lemma, Lemma 5.1, Jγ(f̂γ,n) ≤
J∗γ (HK)+24̃λ,γ,n(Zn) where 4̃λ,γ,n(Zn) , supf∈Fλ |Jn,γ(f)−Jγ(f)|. However, both Jγ(f) and

Jn,γ(f) include the additive term γ‖f‖2
K , so that 4̃λ,γ,n(Zn) = ∆n(`•Fλ), where ∆n(`•Fλ) =

supf∈Fλ |Ln(f) − L(f)|, as used in the proof of Theorem 9.1. The proof of Theorem 9.1
establishes that with probability at least 1− δ,

2∆n(` • Fλ) ≤
16(M + CKλ)2

√
n

+ (M2 + C2
Kλ

2)

√
8 log(1/δ)

n
.

Combining these observations with the trivial inequality L(f̂n,γ) ≤ Jγ(f̂n,γ), yields that with
probability at least 1− δ,

L(f̂n,γ) ≤ J∗γ (HK) +
16(M + CKλ)2

√
n

+ (M2 + C2
Kλ

2)

√
8 log(1/δ)

n
.(9.11)

Subtracting L∗ from each side of (9.11) and making the substitution λ2 = M2

γ
yields (9.10).

�

Remark 9.1. The value of λ used for the purpose of the proof of Theorem 9.2 satisfies
λ2γ = M2. If, instead, λ is given first, then the first part of the proof of Theorem 9.2 shows
that if γ is such that λ2γ ≥ M2 then the solution of the regularized ERM problem in this
section meets the constraint of Section 9.1. Typically, however, smaller values of γ would
give solutions such that the constraint of Section 9.1 is satisfied with near equality.

114

Part 3

Some Applications

CHAPTER 10

Empirical vector quantization

Now that we have safely made our way through the combinatorial forests of Vapnik–
Chervonenkis classes, we will look at an interesting application of the VC theory to a problem
in communications engineering: empirical design of vector quantizers. Vector quantization
is a technique for lossy data compression (or source coding), so we will first review, at a
very brisk pace, the basics of source coding, and then get to business. The presentation will
closely follow an excellent survey by Tamás Linder [Lin01].

10.1. A brief introduction to source coding

It’s trite but true: we live in a digital world. We store, exchange, and manipulate
vast quantities of binary data. While a lot of the data are inherently discrete (e.g., text),
most are compressed representations of continuous-valued (analog) sources, such as audio,
speech, images, or video. The process of mapping source data from their “native” format to
binary representations and back is known in the information theory and the communications
engineering communities as source coding.

There are two types of source coding: lossless and lossy. The former pertains to con-
structing compact binary representations of discrete data, such as text, and the objective is
to map any sequence of symbols emitted by the source of interest into a binary file which
is as short as possible and which will permit exact (i.e., error-free) reconstruction (decom-
pression) of the data. The latter, on the other hand, deals with continuous-valued sources
(such as images), and the objective is to map any source realization to a compact binary
representation that would, upon decompression, differ from the original source as little as
possible. We will focus on lossy source coding. Needless to say, we will only be able to
give a very superficial overview of this rich subject. A survey article by Gray and Neuhoff
[GN98] does a wonderful job of tracing both the historical development and the state of the
art in lossy source coding; for an encyclopedic treatment, see the book by Gersho and Gray
[GG92].

One of the simpler models of an analog source is a stationary stochastic process Z1, Z2, . . .
with values in Rd. For example, if d is a perfect square, then each Zi could represent a

√
d×
√
d

image patch. The compression process consists of two stages. First, each Zi is mapped to
a binary string bi. Thus, the entire data stream {Zi}∞i=1 is represented by the sequence of
binary strings {bi}∞i=1. The source data are reconstructed by mapping each bi into a vector

Ẑi ∈ Rd. Since each Zi takes on a continuum of values, the mapping Zi 7→ bi is inherently
many-to-one, i.e., noninvertible. This is the reason why this process is called lossy source
coding — in going from the analog data {Zi} to the digital representation {bi} and then to

the reconstruction Ẑi, we lose information needed to recover each Zi exactly. The overall

mapping Zi 7→ bi 7→ Ẑi is called a vector quantizer, where the term “vector” refers to the

116

vector-valued nature of the source {Zi}, while the term “quantizer” indicates the process of
representing a continuum by a discrete set. We assume that the mappings comprising the
quantizer are time-invariant, i.e., do not depend on the time index i ∈ N.

There are two figures of merit for a given quantizer: the compactness of the binary

representation Zi 7→ bi and the accuracy of the reconstruction bi 7→ Ẑi. The former is given
by the rate of the quantizer, i.e., the expected length of bi in bits. Since the source {Zi} is
assumed to be stationary and the quantizer is assumed to be time-invariant, we have

E[len(bi)] = E[len(b1)], ∀i ∈ N,
where, for a binary string b, len(b) denotes its length in bits. If the length of bi ≡ bi(Zi)
depends on Zi, then we say that the quantizer is variable-rate; otherwise, we say that the

quantizer is fixed-rate. The latter is how well the reconstruction Ẑi approximates the source
Zi on average. In order to measure that, we pick a nonnegative distortion measure d :
Rd×Rd → [0,∞), so that d(z, ẑ) ≥ 0 quantifies how well one vector z ∈ Rd is approximated

by another ẑ ∈ Rd. Then we look at the expected value E[d(Zi, Ẑi)], which is the same for
all i, again owing to the stationarity of {Zi} and the time invariance of the quantizer. A
typical distortion measure is the squared Euclidean norm

d(z, ẑ) = ‖z − ẑ‖2 =
d∑

j=1

|z(j)− ẑ(j)|2,

where z(j) denotes the jth coordinate of z. We will focus only on this distortion measure
from now on.

Now, using the fact that the rate and the expected distortion of a quantizer do not
depend on the time index i, we can just consider the problem of quantizing a single Rd-
valued random variable Z with the same distribution as that of Z1. From now on, we will

refer to such a Z as the source. Thus, the rate of a given quantizer Z 7→ b 7→ Ẑ is given

by E[len(b)] and the expected distortion E‖Z − Ẑ‖2. Naturally, one would like to keep both
of these as low as possible: low rate means that it will take less memory space to store
the compressed data and that it will be possible to transmit the compressed data over low-
capacity digital channels; low expected distortion means that the reconstructed source will
be a very accurate approximation of the true source. However, these two quantities are in
conflict: if we make the rate too low, we will be certain to incur a lot of loss in reconstructing
the data; if we insist on very accurate reconstruction, the binary representation must use a
large number of bits. For this reason, the natural question is as follows: what is the smallest
distortion achievable on a given source by any quantizer with a given rate?

10.2. Fixed-rate vector quantization

Let Z = Rd.

Definition 10.1. Let k ∈ N. A (d-dimensional) k-point vector quantizer is a (measur-
able) mapping q : Z → C = {y1, . . . , yk} ⊂ Z, where the set C is called the codebook and its
elements are called the codevectors.

The source is a random vector Z ∈ Rd with some probability distribution PZ . A given

k-point quantizer q represents Z by the quantized output Ẑ = q(Z). Since q(Z) can take

117

only k possible values, it is possible to represent it uniquely by a binary string of dlog2 ke
bits. The number

R(q) := dlog2 ke
is called the rate of q (in bits), where we follow standard practice and ignore the integer
constraint on the length of the binary representation. The rate is often normalized by the
dimension d to give r(q) = d−1R(q) (measured in bits per coordinate); however, since we
assume d fixed, there is no need to worry about the normalization. The fidelity of q in
representing Z ∼ PZ is measured by the expected distortion

D(PZ , q) := E‖Z − q(Z)‖2 =

∫

Rd
‖z − q(z)‖2PZ(dz).

We assume throughout that Z has finite second moment, E‖Z‖2 <∞, so D(PZ , q) <∞.
The main objective in vector quantization is to minimize the expected distortion subject

to a constraint on the rate (or, equivalently, on the codebook size). Thus, if we denote by
Qk the set of all k-point vector quantizers, then the optimal performance on a given source
distribution PZ is defined by

D∗k(PZ) := inf
q∈Qk

D(PZ , q) ≡ inf
q∈Qk

E‖Z − q(Z)‖2.(10.1)

Definition 10.2. We say that a quantizer q∗ ∈ Qk is optimal for PZ if

D(PZ , q
∗) = D∗k(PZ).

As we will soon see, it turns out that an optimal quantizer always exists — in other
words, the infimum in (10.1) is actually a minimum — and it can always be chosen to have
a particularly useful structural property:

Definition 10.3. A quantizer q ∈ Qk with codebook C = {y1, . . . , yk} is called nearest-
neighbor if, for all z ∈ Z,

‖z − q(z)‖2 = min
1≤j≤k

‖z − yj‖2.

Let QNN
k denote the set of all k-point nearest-neighbor quantizers. We have the following

simple but important result:

Lemma 10.1. For any q ∈ Qk we can always find some q′ ∈ QNN
k , such that D(PZ , q

′) ≤
D(PZ , q).

Proof. Given a quantizer q ∈ Qk with codebook C = {y1, . . . , yk}, define q′ by

q′(z) := arg min
yj∈C

‖z − yj‖2,

where ties are broken by going with the lowest index. Then q′ is clearly a nearest-neighbor
quantizer, and

D(PZ , q
′) = E‖Z − q′(Z)‖2

= E

[
min

1≤j≤k
‖Z − yj‖2

]

≤ E‖Z − q(Z)‖2

≡ D(PZ , q).

118

The lemma is proved. �

In light of this lemma, we can rewrite (10.1) as

D∗k(PZ) = inf
q∈QNN

k

E‖Z − q(Z)‖2 = inf
C={y1,...,yk}⊂Z

E

[
min

1≤j≤k
‖Z − yj‖2

]
.(10.2)

An important result due to Pollard [Pol82], which we state here without proof, then says
the following:

Theorem 10.1. If Z has a finite second moment, E‖Z‖2 < ∞, then there exists a
nearest-neighbor quantizer q∗ ∈ QNN

k such that D(PZ , q
∗) = D∗k(PZ).

10.3. Learning an optimal quantizer

Unfortunately, finding an optimal q∗ is a very difficult problem. Indeed, the optimization
problem in (10.2) has a combinatorial search component to it, since we have to optimize over
all k-point sets C in Rd. Moreover, the source distribution PZ is often not known exactly,
especially for very complex sources, such as natural images. For these reasons, we have to
resort to empirical methods for quantizer design, which rely on the availability of a large
number of independent samples from the source distribution of interest.

Assuming that such samples are easily available, we can formulate the empirical quantizer
design problem as follows. Let us fix the desired codebook size k. For each n ∈ N, let
Zn = (Z1, . . . , Zn) be an i.i.d. sample from PZ . We seek an algorithm that would take Zn

and produce a quantizer q̂n ∈ Qk that would approximate, as closely as possible, an optimal
quantizer q∗ ∈ Qk that achieves D∗k(PZ). In other words, we hope to learn an (approximately)
optimal quantizer for PZ based on a sufficiently long training sample.

The first thing to note is that the theory of quantization outlined in the preceding section
applies to the empirical distribution of the training sample Zn,

Pn =
1

n

n∑

i=1

δZi .

In particular, given a quantizer q ∈ Qk, we can compute its expected distortion

D(Pn, q) = EPn‖Z − q(Z)‖2 =
1

n

n∑

i=1

‖Zi − q(Zi)‖2.

Moreover, the minimum achievable distortion is given by

D∗k(Pn) = min
q∈Qk

1

n

n∑

i=1

‖Zi − q(Zi)‖2 = min
q∈QNN

k

‖Zi − q(Zi)‖2.

Note that we have replaced the infimum with the minimum, since an optimal quantizer
always exists and can be assumed to have the nearest-neighbor property. Moreover, since
Pn is a discrete distribution, the existence of an optimal nearest-neighbor quantizer can be
proved directly, without recourse to Pollard’s theorem. Thus, we can restrict our attention
to nearest-neighbor k-point quantizers.

119

Definition 10.4. We say that a quantizer q̂n ∈ QNN
k is empirically optimal for Zn if

D(Pn, q̂n) = D∗k(Pn) = min
q∈QNN

k

D(Pn, q) = min
q∈QNN

k

1

n

n∑

i=1

‖Zi − q(Zi)‖2.

Note that, by the nearest-neighbor property,

D∗k(Pn) = min
C={y1,...,yk}⊂Z

1

n

n∑

i=1

min
1≤j≤k

‖Zi − yj‖2.

Thus, let q̂n ∈ QNN
k be an empirically optimal nearest-neighbor quantizer. Let Z ∼ PZ

be a new source realization, independent of the training data Zn. If we apply q̂n to Z, the

resulting quantized output Ẑ = q̂n(Z) will depend on both the input Z and on the training
data Zn. Moreover, the expected distortion of q̂n, given by

D(PZ , q̂n) = E
[
‖Z − q̂n(Z)‖2

∣∣∣Zn
]

=

∫

Z

‖z − q̂n(z)‖2PZ(dz),

is a random variable, since it depends (through q̂n) on the training data Zn. In the next
section we will show that, under certain assumptions on the source PZ , the empirically
optimal quantizer q̂n is nearly optimal on PZ as well, in the sense that

E
[
D(PZ , f̂n)−D∗k(PZ)

]
≤ C√

n
,(10.3)

where the expectation is w.r.t. the distribution Zn and C > 0 is some constant that depends
on d, k, and a certain characteristic of PZ . More generally, it is possible to show that
empirically optimal quantizers are strongly consistent in the sense that

D(PZ , q̂n)−D∗k(PZ)
n→∞−−−→ 0 almost surely

provided the source PZ has a finite second moment (see Linder’s survey [Lin01] for details).

Remark 10.1. It should be pointed out that the problem of finding an exact minimizer of
D(Pn, q) over q ∈ QNN

k is NP-complete. Instead, various approximation techniques are used.
The most popular one is the Lloyd algorithm, known in the computer science community

as the method of k-means. There, one starts with an initial codebook C(0) = {y(0)
1 , . . . , y

(0)
k }

and then iteratively recomputes the quantizer partition and the new codevectors until con-
vergence.

10.4. Finite sample bound for empirically optimal quantizers

In this section, we will show how the VC theory can be used to establish (10.3) for any
source supported on a ball of finite radius. This result was proved by Linder, Lugosi and
Zeger [LLZ94], and since then refined and extended by multiple authors. Some recent works
even remove the requirement that Z be finite-dimensional and consider more general coding
schemes in Hilbert spaces [MP10].

For a given r > 0 and z ∈ Rd, let Br(z) denote the `2 ball of radius r centered at z:

Br(z) :=
{
y ∈ Rd : ‖y − z‖ ≤ r

}
.

Let P(r) denote the set of all probability distributions PZ on Z = Rd, such that

PZ (Br(0)) = 1.

120

Here is the main result we will prove in this section:

Theorem 10.2. There exists some absolute constant C > 0, such that

sup
PZ∈P(r)

E [D(PZ , q̂n)−D∗k(PZ)] ≤ Cr2

√
k(d+ 1) log(k(d+ 1))

n
.

Here, as before, q̂n denotes an empirically optimal quantizer based on an i.i.d. sample Zn.

Before launching into the proof, we state and prove a useful lemma:

Lemma 10.2. Let QNN
k (r) denote the set of all nearest-neighbor k-point quantizers whose

codewords lie in Br(0). Then for any PZ ∈ P(r),

D(PZ , q̂n)−D∗k(PZ) ≤ 2 sup
q∈QNN

k (r)

|D(Pn, q)−D(PZ , q)| .

Proof. Fix PZ and let q∗ ∈ QNN
k denote an optimal quantizer, i.e., D(PZ , q

∗) = D∗k(PZ).
Then, using our old trick of adding and subtracting the right empirical quantities, we can
write

D(PZ , q̂n)−D∗k(PZ) = D(PZ , q̂n)−D(Pn, q̂n) +D(Pn, q̂n)−D(Pn, q
∗) +D(Pn, q

∗)−D(PZ , q
∗).

Since q̂n minimizes the empirical distortion D(Pn, q) over all q ∈ QNN
k , we have D(Pn, q̂n) ≤

D(Pn, q
∗), which leads to

D(PZ , q̂n)−D∗k(PZ) ≤ D(PZ , q̂n)−D(Pn, q̂n) +D(Pn, q
∗)−D(PZ , q

∗).(10.4)

Now, since Br(0) is a convex set, for any point y 6∈ Br(0) we can compute its projection y′

onto Br(0), namely y′ = ry/‖y‖. Then y′ is strictly closer to all z ∈ Br(0) than y, i.e.,

‖z − y′‖ < ‖z − y‖, ∀z ∈ Br(0).

Thus, if we take an arbitrary quantizer q ∈ Qk and replace all of its codevectors outside Br(0)
by their projections, we will obtain another quantizer q′, such that ‖z − q′(z)‖ ≤ ‖z − q(z)‖
for all z ∈ Br(0). (The ≤ sign is due to the fact that some of the codevectors of q may
already be in Br(0), so the projection will not affect them). But then for any PZ ∈ P(r) we
will have D(PZ , q

′) ≤ D(PZ , q). Moreover, if Zn is an i.i.d. sample from PZ and Pn is the
corresponding empirical distribution, then Pn ∈ P(r) with probability one. Hence, we can
assume that both q̂n and q∗ have all their codevectors in Br(0), and therefore from (10.4) we
obtain

D(PZ , q̂n)−D∗k(PZ) ≤ D(PZ , q̂n)−D(Pn, q̂n) +D(Pn, q
∗)−D(PZ , q

∗)

≤ |D(Pn, q̂n)−D(PZ , q̂n)|+ |D(PZ , q
∗)−D(Pn, q

∗)|
≤ 2 sup

q∈QNN
k (r)

|D(Pn, q)−D(PZ , q)| .

This finishes the proof. �

Now we can get down to business:

Proof (of Theorem 10.2). For a given quantizer q ∈ QNN
k (r), define the function

fq(z) := ‖z − q(z)‖2,

121

which is just the squared Euclidean distortion between z and q(z). In particular, for any
P ∈ P(r) the expected distortion D(P, q) is equal to P (fq). Since q ∈ QNN

k (r), we have
‖q(z)‖ ≤ r for all z. Therefore, for any z ∈ Br(0) we will have

0 ≤ fq(z) ≤ 2‖z‖2 + 2‖q(z)‖2 ≤ 4r2.

Therefore, using the fact that the expectation of any nonnegative random variable U can be
written as

EU =

∫ ∞

0

P(U > u)du,

we can write

D(PZ , q) = PZ(fq) =

∫ 4r2

0

PZ(fq(Z) > u)du

and

D(Pn, q) = Pn(fq) =

∫ 4r2

0

Pn(fq(Z) > u)du =

∫ 4r2

0

1

n

n∑

i=1

1{fq(Zi)>u}du a.s.

Therefore

sup
q∈QNN

k (r)

|D(Pn, q)−D(PZ , q)|

= sup
q∈QNN

k (r)

|Pn(q)− PZ(q)|

= sup
q∈QNN

k (r)

∣∣∣∣∣

∫ 4r2

0

(
1

n

n∑

i=1

1{fq(Zi)>u} − PZ(fq(Z) > u)

)
du

∣∣∣∣∣

≤ 4r2 sup
q∈QNN

k (r)

sup
0≤u≤4r2

∣∣∣∣∣
1

n

n∑

i=1

1{fq(Zi)>u} − PZ(fq(Z) > u)

∣∣∣∣∣ a.s.(10.5)

where the last step uses the fact that

∫ b

a

h(u)du ≤ |b− a| sup
a≤u≤b

|h(u)|.

Now, for a given q ∈ QNN
k (r) and a given u > 0 let us define the set

Au,q :=
{
z ∈ Rd : fq(z) > u

}
,

and let A denote the class of all such sets: A := {Au,q : u > 0, q ∈ QNN
k (r)}. Then

1{fq(z)>u} = 1{z∈Au,q}, so from (10.5) we can write

sup
q∈QNN

k (r)

|D(Pn, q)−D(PZ , q)| ≤ 4r2 sup
A∈A
|Pn(A)− PZ(A)| .(10.6)

122

Therefore,

E [D(PZ , q̂n)−D∗k(PZ)] ≤ 2E

[
sup

q∈QNN
k (r)

|D(Pn, q)−D(PZ , q)|
]

≤ 8r2E

[
sup
A∈A
|Pn(A)− PZ(A)|

]
,

where the first step follows from Lemma 10.2 and the second step follows from (10.6). To
finish the proof, we will show that A is a VC class with V (A) ≤ 4k(d + 1) log(k(d + 1)), so
that

E

[
sup
A∈A
|Pn(A)− PZ(A)|

]
(a)

≤ C

√
V (A)

n
≤ 2C

√
k(d+ 1) log(k(d+ 1))

n
,

where (a) follows from Theorem 6.1 (based on symmetrization trick) and Theorem 7.2 (Dud-
ley’s theorem using chaining technique). In order to bound the VC dimension of A, let us
consider a typical set Au,q. Let {y1, . . . , yk} denote the codevectors of q. Since q is a nearest-
neighbor quantizer, a point z will be in Au,q if and only if

fq(z) = min
1≤j≤k

‖z − yj‖2 > u,

which is equivalent to

‖z − yj‖ >
√
u, ∀1 ≤ j ≤ k.

In other words, we can write

Au,q =
k⋂

j=1

B√u(yj)
c.

Since this can be done for every u > 0 and every q ∈ QNN
k (r), we conclude that the class A

is contained in another class Ã, defined by

Ã :=

{
k⋂

j=1

Bc
j : Bj ∈ B, ∀j

}
,

where B denotes the class of all closed balls in Rd. Therefore, V (A) ≤ V (Ã). To bound

V (Ã), we must examine its shatter coefficients. We will need the following facts1:

(1) For any class of sets M, let M denote the class {M c : M ∈ M} formed by taking
the complements of all sets in M. Then for any n

Sn(M) = Sn(M).

(2) For any class of sets N, let Nk denote the class {N1 ∩ N2 ∩ . . . ∩ Nk : Nj ∈ N, 1 ≤
j ≤ k}, formed by taking intersections of all possible choices of k sets from N. Then

Sn(Nk) ≤ Skn(N).

1Exercise: prove them!

123

In the above notation, Ã = (B)k, so

Sn(Ã) ≤ Skn(B),

where B is the class of all closed balls in Rd. Section 7.2.5, based on Dudley classses of
binary classifiers, shows that V (B) = d+ 1, and so the Sauer–Shelah lemma gives

Sn(Ã) ≤
(

ne

d+ 1

)k(d+1)

, for n ≥ d+ 1.(10.7)

We can now upper-bound V (Ã) by finding an n for which the right-hand side of (10.7) is
less than 2n. It is easy to check that, for d ≥ 2, n = 4k(d+ 1) log(k(d+ 1)) does the job; for

d = 1 it’s clear that V (Ã) ≤ 2k. Thus,

V (A) ≤ V (Ã) ≤ 4k(d+ 1) log(k(d+ 1)),

as claimed. The proof is finished. �

124

CHAPTER 11

Dimensionality reduction in Hilbert spaces

Dimensionality reduction is a generic name for any procedure that takes a complicated
object living in a high-dimensional (or possibly even infinite-dimensional) space and approx-
imates it in some sense by a finite-dimensional vector. We are interested in a particular
class of dimensionality reduction methods. Consider a data source that generates vectors in
some Hilbert space H, which is either infinite-dimensional or has a finite but extremely large
dimension (think Rd with the usual Euclidean norm, where d is huge). We will assume that
the vectors of interest lie in the unit ball of H,

B(H) :=
{
x ∈ H : ‖x‖ ≤ 1

}
,

where ‖x‖ =
√
〈x, x〉 is the norm on H. We wish to represent each x ∈ B(H) by a vector

ŷ ∈ Rk for some fixed k (if H is d-dimensional, then of course we must have d � k). For
instance, k may represent some storage limitation, such as a device that can store no more
than k real numbers (or, more realistically, k double-precision floating-point numbers, which
for all practical purposes can be thought of as real numbers). The mapping x 7→ ŷ can be
thought of as an encoding rule. In addition, given ŷ ∈ Rk, we need a decoding rule that
takes ŷ and outputs a vector x̂ ∈ H that will serve as an approximation of x. In general, the
cascade of mappings

x
encoding−−−−−→ ŷ

decoding−−−−−→ x̂

will be lossy, i.e., x 6= x̂. So, the goal is to ensure that the squared norm error ‖x − x̂‖2 is
as small as possible. In this lecture, we will see how Rademacher complexity techniques can
be used to characterize the performance of a particular fairly broad class of dimensionality
reduction schemes in Hilbert spaces. Our exposition here is based on a beautiful recent paper
of Maurer and Pontil [MP10].

We will consider a particular type of dimensionality reduction schemes, where the encoder
is a (nonlinear) projection, whereas the decoder is a linear operator from Rk into H (the
Appendix contains some basic facts pertaining to linear operators between Hilbert spaces).
To specify such a scheme, we fix a pair (Y, T) consisting of a closed set Y ⊆ Rk and a linear
operator T : Rk → H. We call Y the codebook and use the encoding rule

ŷ = arg min
y∈Y

‖x− Ty‖2.(11.1)

Unless Y is a closed subspace of Rk, this encoding map will be nonlinear. The decoding, on
the other hand, is linear: x̂ = T ŷ. With these definitions, the reconstruction error is given
by

‖x− x̂‖2 = fT (x) := min
y∈Y
‖x− Ty‖2.

125

Now suppose that the input to our dimensionality reduction scheme is a random vector
X ∈ B(H) with some unknown distribution P . Then we measure the performance of the
coding scheme (Y, T) by its expected reconstruction error

L(T) := EP [fT (X)] ≡ EP

[
min
y∈Y
‖X − Ty‖2

]

(note that, even though the reconstruction error depends on the codebook Y, we do not
explicitly indicate this dependence, since the choice of Y will be fixed by a particular appli-
cation). Now let T be some fixed class of admissible linear decoding maps T : Rk → H. So,

if we knew P , we could find the best decoder T̃ ∈ T that achieves

L∗(T) := inf
T∈T

L(T)

(assuming, of course, that the infimum exists and is achieved by at least one T ∈ T).
By now, you know the drill: We don’t know P , but we have access to a large set of

samples X1, . . . , Xn drawn i.i.d. from P . So we attempt to learn T̃ via ERM:

T̂n := arg min
T∈T

1

n

n∑

i=1

fT (Xi)

= arg min
T∈T

1

n

n∑

i=1

min
y∈Y
‖Xi − Ty‖2.

Our goal is to establish the following result:

Theorem 11.1. Assume that Y is a closed subset of the unit ball Bk
2 ={

y ∈ Rk : ‖y‖2 ≤ 1
}

, and that every T ∈ T satisfies

‖Tej‖ ≤ α, 1 ≤ j ≤ k

‖T‖Y := sup
y∈Y, y 6=0

‖Ty‖ ≤ α

for some finite α ≥ 1, where e1, . . . , ek is the standard basis of Rk. Then

L(T̂n) ≤ L∗(T) +
60α2k2

√
n

+ 4α2

√
2 log(1/δ)

n
(11.2)

with probability at lest 1 − δ. In the special case when Y = {e1, . . . , ek}, the standard basis
in Rk, the event

L(T̂n) ≤ L∗(T) +
40α2k√

n
+ 4α2

√
2 log(1/δ)

n
(11.3)

holds with probability at least 1− δ.
Remark 11.1. The above result is slightly weaker than the one from [MP10]; as a

consequence, the constants in Eqs. (11.2) and (11.3) are slightly worse than they could
otherwise be.

11.1. Examples

Before we get down to business and prove the theorem, let’s look at a few examples.

126

11.1.1. Principal component analysis (PCA). The objective of PCA is, given k,
construct a projection Π onto a k-dimensional closed subspace of H to maximize the average
“energy content” of the projected vector:

maximize E‖ΠX‖2

subject to dim Π(H) = k(11.4)

Π2 = Π

For any x ∈ H,

‖Πx‖2 = ‖x‖2 − ‖(I − Π)x‖2,(11.5)

where I is the identity operator on H. To prove (11.5), expand the right-hand side:

‖x‖2 − ‖(I − Π)x‖2 = ‖x‖2 − ‖x− Πx‖2

= 2〈x,Πx〉 − ‖Πx‖2

= ‖Πx‖2,

where the last step is by the properties of projections. Thus,

‖Πx‖2 = ‖x‖2 − ‖x− Πx‖2

= ‖x‖2 −min
x′∈K
‖x− x′‖2,(11.6)

where K is the range of Π (the closure of the linear span of all vectors of the form Πx, x ∈ H).
Moreover, any projection operator Π : H → K with dim(H) = k can be factored as TT ∗,
where T : Rk → H is an isometry (see Appendix for definitions and the proof of this fact).
Using this fact, we can write

K = Π(H) =
{
Ty : y ∈ Rk

}
.

Using this in (11.6), we get

‖Πx‖2 = ‖x‖2 − min
y∈Rk
‖x− Ty‖2.

Hence, solving the optimization problem (11.4) is equivalent to finding the best linear de-

coding map T̃ for the pair (Y,T), where Y = Rk and T is the collection of all isometries
T : Rk → H. Moreover, if we recall our assumption that X ∈ B(H) with probability one,
then we see that there is no loss of generality if we take

Y = Bk
2 :=

{
y ∈ Rk : ‖y‖2 ≤ 1

}
,

i.e., the unit ball in (Rk, ‖·‖2). This follows from the fact that ‖Πx‖ ≤ ‖x‖ for any projection
Π, so, in particular, for Π = TT ∗ the encoding ŷ in (11.1) can be written as ŷ = T ∗x, and

‖ŷ‖2 = ‖T ŷ‖ = ‖TT ∗x‖ = ‖Πx‖ ≤ ‖x‖ ≤ 1.

Thus, Theorem 11.1 applies with α = 1. That said, there are much tighter bounds for PCA
that rely on deeper structural results pertaining to finite-dimensional subspaces of Hilbert
spaces, but that is beside the point. The key idea here is that we can already get nice bounds
using the tools already at our fingertips.

127

11.1.2. Vector quantization or k-means clustering. Vector quantization (or k-
means clustering) is a procedure that takes a vector x ∈ H and maps it to its nearest
neighbor in a finite set C = {ξ1, . . . , ξk} ⊂ H, where k is a given positive integer:

x̂ = arg min
ξ∈C

‖x− ξ‖2.

If X is random with distribution P , then the optimal k-point quantizer is given a size-k set

C̃ = {ξ̃1, . . . , ξ̃k} that minimizes the reconstruction error

EP

[
min
ξ∈C
‖X − ξ‖2

]

over all C ⊂ H with |C| = k. We can cast the problem of finding C̃ in our framework by
taking Y = {e1, . . . , ek} (the standard basis in Rk) and letting T be the set of all linear
operators T : Rk → H. It is easy to see that any C ⊂ H with |C| = k can be obtained as an
image of the standard basis {e1, . . . , ek} under some linear operator T : Rk → H. Indeed,
for any C = {ξ1, . . . , ξk}, we can just define a linear operator T : Rk → H by

Tej := ξj, 1 ≤ j ≤ k

and then extending it to all of Rk by linearity:

T

(
k∑

j=1

yjej

)
=

k∑

j=1

yjTej =
k∑

j=1

yjξj.

So, another way to interpret the objective of vector quantization is as follows: given a
distribution P supported on B(H), we seek a k-element set C = {ξ1, . . . , ξk} ⊂ H, such that
the random vector X ∼ P can be well-approximated on average by linear combinations of
the form

k∑

j=1

yjξj,

where the vector of coefficients y = (y1, . . . , yk) can have only one nonzero component, which
is furthermore required to be equal to 1. In fact, there is no loss of generality in assuming
that C ⊂ B(H) as well. This is a consequence of the fact that, for any x ∈ B(H) and any
x′ ∈ H, we can always find some x′′ ∈ B(H) such that

‖x− x′′‖ ≤ ‖x− x′‖.

Indeed, it suffices to take x′′ = arg minz∈B(H) ‖x′ − z‖2, and it is not hard to show that
x′′ = x′/‖x′‖.

Thus, Theorem 11.1 applies with α = 1. Moreover, the excess risk grows linearly with
dimension k, cf. Eq. (11.3). It is not known whether this linear dependence on k is optimal

— there are Ω(
√
k/n) lower bounds for vector quantization, but it is still an open question

whether these lower bounds are tight [MP10].

128

11.1.3. Nonnegative matrix factorization. Consider approximating the random
vector X ∼ P , where P is supported on the unit ball B(H), by linear combinations of
the form

k∑

j=1

yjξj,

where the real vector y = (y1, . . . , yk) is constrained to lie in the nonnegative orthant

Rk
+ :=

{
y = (y1, . . . , yk) ∈ Rk : yj ≥ 0, 1 ≤ j ≤ k

}
,

while the unit vectors ξ1, . . . , ξk ∈ B(H) are constrained by the positivity condition

〈ξj, ξ`〉H ≥ 0, 1 ≤ j, ` ≤ k.

This is a generalization of the nonnegative matrix factorization (NMF) problem, originally
posed by Lee and Seung [LS99].

To cast NMF in our framework, let Y = Rk
+, and let T be the set of all linear operators

T : Rk → H such that (i) ‖Tej‖ = 1 for all 1 ≤ j ≤ k and (ii) 〈Tej, T e`〉 ≥ 0 for all
1 ≤ j, ` ≤ k. Then the choice of T is equivalent to the choice of ξ1, . . . , ξk ∈ B(H), as
above. Moreover, it can be shown that, for any x ∈ B(H) and any T ∈ T, the minimum of
‖x − Ty‖2 over all y ∈ Rk

+ is achieved at some ŷ ∈ Rk
+ with ‖ŷ‖2 ≤ 1. Thus, there is no

loss of generality if we take Y = Rk
+ ∩ Bk

2 . In this case, the conditions of Theorem 11.1 are
satisfied with α = 1.

11.1.4. Sparse coding. Take Y to be the `1 unit ball

Bk
1 :=

{
y = (y1, . . . , yk) ∈ Rk : ‖y‖1 =

k∑

j=1

|yj| ≤ 1

}
,

and let T be the collection of all linear operators T : Rk → H with ‖Tej‖ ≤ 1 for all
1 ≤ j ≤ k. In this case, the dimensionality reduction problem is to approximate a random
X ∈ B(H) by a linear combination of the form

k∑

j=1

yjξj,

where y = (y1, . . . , yk) ∈ Rk satisfies the constraint ‖y‖1 ≤ 1, while the vectors ξ1, . . . , ξk
belong to the unit ball B(H). Then for any y =

∑k
j=1 yjej ∈ Y we have

‖Ty‖ =

∥∥∥∥∥
k∑

j=1

yjTej

∥∥∥∥∥

≤
k∑

j=1

|yj|‖Tej‖

≤ ‖y‖1 · max
1≤j≤k

‖Tej‖
≤ 1,

129

where the third line is by Hölder’s inequality. Then the conditions of Theorem 11.1 are
satisfied with α = 1.

11.2. Proof of Theorem 11.1

Now we turn to the proof of Theorem 11.1. The format of the proof is the familiar one:
if we consider the empirical reconstruction error

Ln(T) :=
1

n

n∑

i=1

fT (Xi)

=
1

n

n∑

i=1

min
y∈Y
‖Xi − Ty‖2

for every T ∈ T and define the uniform deviation

∆n(Xn) := sup
T∈T
|Ln(T)− L(T)| ,(11.7)

then

L(T̂n) ≤ L∗(T) + 2∆n(Xn).

Now, for any x ∈ B(H), any y ∈ Y, and any T ∈ T, we have

0 ≤ ‖x− Ty‖2 ≤ 2‖x‖2 + 2‖Ty‖2 ≤ 4α2.

Thus, the uniform deviation ∆n(Xn) has bounded differences with c1 = . . . = cn = 4α2/n,
so by McDiarmid’s inequality,

L(T̂n) ≤ L∗(T) + 2E∆n(Xn) + 4α2

√
2 log(1/δ)

n
,(11.8)

with probability at least 1− δ. By the usual symmetrization argument, we obtain the bound
E∆n(Xn) ≤ 2ERn(F(Xn)), where F is the class of functions fT for all T ∈ T. Now, the
whole affair hinges on getting a good upper bound on the Rademacher averages Rn(F(Xn)).
We will do this in several steps, and we need to introduce some additional machinery along
the way.

11.2.1. Gaussian averages. Let γ1, . . . , γn be i.i.d. standard normal random variables.
In analogy to the Rademacher average of a bounded set A ⊂ Rn, we can define the Gaussian
average of A [BM02] as

Gn(A) := Eγn sup
a∈A

∣∣∣∣∣
1

n

n∑

i=1

γiai

∣∣∣∣∣ .

Lemma 11.1 (Gaussian averages vs. Rademacher averages).

Rn(A) ≤
√
π

2
Gn(A).(11.9)

130

Proof. Let σn = (σ1, . . . , σn) be an n-tuple of i.i.d. Rademacher random variables
independent of γn. Since each γi is a symmetric random variable, it has the same distribution
as σi|γi|. Therefore,

Gn(A) =
1

n
Eγn sup

a∈A

∣∣∣∣∣
n∑

i=1

γiai

∣∣∣∣∣

=
1

n
EσnEγn sup

a∈A

∣∣∣∣∣
n∑

i=1

σi|γi|ai
∣∣∣∣∣

≥ 1

n
Eσn sup

a∈A

∣∣∣∣∣
n∑

i=1

σiaiEγi |γi|
∣∣∣∣∣

= E|γ1| ·
1

n
Eσn sup

a∈A

∣∣∣∣∣
n∑

i=1

σiai

∣∣∣∣∣
= E|γ1|Rn(A),

where the second step is by convexity, while in the last step we have used the fact that
γ1, . . . , γn are i.i.d. random variables. Now, if γ is a standard normal random variable, then

E|γ| = 1√
2π

∫ ∞

−∞
|t|e−t2/2dt

=
1√
2π

∫ ∞

0

te−t
2/2dt− 1√

2π

∫ 0

−∞
te−t

2/2dt

=

√
2

π

∫ ∞

0

te−t
2/2dt

=

√
2

π
.

Rearranging, we get (11.9). �

Gaussian averages are often easier to work with than Rademacher averages. The reason
for this is that, for any n real constants a1, . . . , an, the sum Wa := a1γ1 + . . . + anγn is a
Gaussian random variable with mean 0 and variance a2

1 + . . .+ a2
n. Moreover, for any finite

collection of vectors a(1), . . . , a(m) ∈ A, the random variables Wa(1) , . . . ,Wa(m) are jointly
Gaussian. Thus, the collection of random variables (Wa)a∈A is a zero-mean Gaussian process,
where we say that a collection of real-valued random variables (Wa)a∈A is a Gaussian process
if all finite linear combinations of the Wa’s are Gaussian random variables. In particular, we

131

can compute covariances: for any a, a′ ∈ A,

E[WaWa′] = E

[
n∑

i=1

n∑

j=1

γiγjaia
′
j

]

=
n∑

i=1

n∑

j=1

E[γiγj]aia
′
j

=
n∑

i=1

aia
′
i

= 〈a, a′〉

and things like

E[(Wa −Wa′)
2] = E

[
n∑

i=1

n∑

j=1

γiγj(ai − a′i)(aj − a′j)
]

=
n∑

i=1

n∑

j=1

E [γiγj] (ai − a′i)(aj − a′j)

=
n∑

i=1

(ai − a′i)2

= ‖a− a′‖2.

The latter quantities are handy because of a very useful result called Slepian’s lemma [Sle62,
LT91]:

Lemma 11.2. Let (Wa)a∈A and (Va)a∈A be two zero-mean Gaussian processes with some
index set A (not necessarily a subset of Rn), such that

E[(Wa −Wa′)
2] ≤ E[(Va − Va′)2], ∀a, a′ ∈ A.(11.10)

Then

E sup
a∈A

Wa ≤ E sup
a∈A

Va.(11.11)

Remark 11.2. The Gaussian processes (Wa), (Va) that appear in Slepian’s lemma are
not necessarily of the form Wa = 〈a, γn〉 with γn = (γ1, . . . , γn) a vector of independent
Gaussians. They can be arbitrarily collections of random variables indexed by the elements
of A, such that any finite linear combination of Wa’s or of Va’s is Gaussian.

Slepian’s lemma is typically used to obtain upper bounds on the expected supremum of
one Gaussian process in terms of another, which is hopefully easier to handle. The only
wrinkle is that we can’t apply Slepian’s lemma to the problem of estimating the Gaussian
average Gn(A) because of the absolute value. However, if all a ∈ A are uniformly bounded
in norm, the absolute value makes little difference:

132

Lemma 11.3. Let A ⊂ Rn be a set of vectors uniformly bounded in norm, i.e., there
exists some L <∞ such that ‖a‖ ≤ L for all a ∈ A. Let

G̃n(A) :=
1

n
E

[
sup
a∈A

n∑

i=1

γiai

]
.(11.12)

Then

G̃n(A) ≤ Gn(A) ≤ 2G̃n(A) +

√
2

π

L

n
.(11.13)

Proof. The first inequality in (11.13) is obvious. For the second inequality, pick an
arbitrary a′ ∈ A, let Wa =

∑n
i=1 γiai for any a ∈ A, and write

Gn(A) =
1

n
E

[
sup
a∈A
|Wa|

]

≤ 1

n
E

[
sup
a∈A
|Wa −Wa′ |

]
+

1

n
E|Wa′ |.

Since a′ was arbitrary, this gives

Gn(A) ≤ sup
a′∈A

{
1

n
E

[
sup
a∈A
|Wa −Wa′ |

]
+

1

n
E|Wa′ |.

}

≤ 1

n
E

[
sup
a,a′∈A

|Wa −Wa′|
]

+
1

n
sup
a′∈A

E|Wa′ |.(11.14)

For any two a, a′, the random variable Wa −Wa′ is symmetric, so

E

[
sup
a,a′∈A

|Wa −Wa′|
]

= 2 E

[
sup
a∈A

Wa

]
.

Moreover, for any a′ ∈ A, Wa′ is Gaussian with zero mean and variance ‖a′‖2 ≤ L2. Thus,

sup
a′∈A

E|Wa′| ≤ LE|γ| =
√

2

π
L.

Using the two above formulas in (11.14), we get the second inequality in (11.13), and the
lemma is proved. �

Armed with this lemma, we can work with the quantity G̃n(A) instead of the Gaussian
average Gn(A). The advantage is that now we can rely on tools like Slepian’s lemma.

11.2.2. Bounding the Rademacher average. Now everything hinges on bounding
the Gaussian average Gn(F(xn)) for a fixed sample xn = (x1, . . . , xn), which in turn will give
us a bound on the Rademacher average Rn(F(xn)), by Lemmas 11.1 and 11.3. Let (γi)1≤i≤n,
(γij)1≤i≤n,1≤j≤k, and (γij`)1≤i≤n,1≤j,`≤k be mutually independent sequences of i.i.d. standard
Gaussian random variables. Define the following zero-mean Gaussian processes, indexed by

133

T ∈ T:

WT :=
n∑

i=1

γifT (xi),

VT :=
n∑

i=1

k∑

j=1

γij〈xi, T ej〉,

UT :=
n∑

i=1

k∑

j=1

k∑

`=1

γij`〈Tej, T e`〉,

ΥT :=
√

8VT +
√

2UT .

By definition,

Gn(F(xn)) = E sup
T∈T

∣∣∣∣∣
1

n

n∑

i=1

γifT (xi)

∣∣∣∣∣

=
1

n
E sup

T∈T
|WT |,

and we define G̃n(F(xn)) similarly. We will use Slepian’s lemma to upper-bound G̃n(F(xn))
in terms of expected suprema of (VT)T∈T and (UT)T∈T. To that end, we start with

E
[
(WT −WT ′)

2
]

=
n∑

i=1

(fT (xi)− fT ′(xi))2

=
n∑

i=1

(
min
y∈Y
‖xi − Ty‖2 −min

y∈Y
‖xi − T ′y‖2

)2

≤
n∑

i=1

(
max
y∈Y

∣∣‖xi − Ty‖2 − ‖xi − T ′y‖2
∣∣
)2

=
n∑

i=1

(
max
y∈Y

∣∣2〈xi, T y − T ′y〉+ ‖Ty‖2 − ‖T ′y‖2
∣∣
)2

≤ 8
n∑

i=1

max
y∈Y
|〈xi, T y − T ′y〉|2 + 2

n∑

i=1

max
y∈Y

(
‖Ty‖2 − ‖T ′y‖2

)2
,(11.15)

134

where in the third line we have used properties of inner products, and the last line is by the
inequality (a+ b)2 ≤ 2a2 + 2b2. Now, for each i,

max
y∈Y
|〈xi, T y − T ′y〉|2 = max

y∈Y

∣∣∣∣∣
k∑

j=1

yj〈xi, T ej − T ′ej〉
∣∣∣∣∣

2

≤ max
y∈Y
‖y‖2

2

k∑

j=1

|〈xi, T ej − T ′ej〉|2

≤
k∑

j=1

|〈xi, T ej − T ′ej〉|2 ,

where in the second step we have used Cauchy–Schwarz. Summing over 1 ≤ i ≤ n, we see
that

n∑

i=1

max
y∈Y
|〈xi, T y − T ′y〉|2 ≤

n∑

i=1

k∑

j=1

|〈xi, T ej − T ′ej〉|2

= E
[
(VT − VT ′)2] .(11.16)

Similarly,

max
y∈Y

(
‖Ty‖2 − ‖T ′y‖2

)2
= max

y∈Y

(
k∑

j=1

k∑

`=1

yjy`〈Tej, T e`〉 − 〈T ′ej, T ′e`〉
)2

≤ max
y∈Y

k∑

j=1

k∑

`=1

y2
j y

2
` ·

k∑

j=1

k∑

`=1

(〈Tej, T e`〉 − 〈T ′ej, T ′e`〉)2

= max
y∈Y
‖y‖4

2 ·
k∑

j=1

k∑

`=1

(〈Tej, T e`〉 − 〈T ′ej, T ′e`〉)2

≤
k∑

j=1

k∑

`=1

(〈Tej, T e`〉 − 〈T ′ej, T ′e`〉)2
.

Therefore,

n∑

i=1

max
y∈Y

(
‖Ty‖2 − ‖T ′y‖2

)
≤ E

[
(UT − UT ′)2] .(11.17)

Using (11.16) and (11.17) in (11.15), we have

E
[
(WT −WT ′)

2
]
≤ 8 E

[
(VT − VT ′)2

]
+ 2 E

[
(UT − UT ′)2

]

= E
[
(ΥT −ΥT ′)

2
]
.

135

We can therefore apply Slepian’s lemma (Lemma 11.2) to (WT)T∈T and (ΥT)T∈T to write

G̃n(F(xn)) =
1

n
E sup

T∈T
WT

≤ 1

n
E sup

T∈T
ΥT

≤
√

8

n
E sup

T∈T
VT +

√
2

n
E sup

T∈T
UT .(11.18)

We now upper-bound the expected suprema of VT and UT . For the former,

E sup
T∈T

VT = E sup
T∈T

n∑

i=1

k∑

j=1

γij〈xi, T ej〉

= E sup
T∈T

k∑

j=1

〈
n∑

i=1

γijxi, T ej

〉
(linearity)

≤ E sup
T∈T

k∑

j=1

∥∥∥∥∥
n∑

i=1

γijxi

∥∥∥∥∥ ‖Tej‖ (Cauchy–Schwarz)

≤ E
k∑

j=1

∥∥∥∥∥
n∑

i=1

γijxi

∥∥∥∥∥ sup
T∈T
‖Tej‖

≤ α
k∑

j=1

E

∥∥∥∥∥
n∑

i=1

γijxi

∥∥∥∥∥ (assumption on ‖T‖)

≤ α

k∑

j=1

E

√√√√
n∑

i=1

n∑

i′=1

γijγi′j〈xi, x′i〉 (linearity)

≤ α

k∑

j=1

√√√√
n∑

i=1

n∑

i′=1

E [γijγi′j] 〈xi, x′i〉 (Jensen)

= α

k∑

j=1

√√√√
n∑

i=1

‖xi‖2 (properties of i.i.d. Gaussians)

≤ αk
√
n. (xi ∈ B(H) for all i)

136

Similarly, for the latter,

E sup
T∈T

UT = E sup
T∈T

n∑

i=1

k∑

j=1

k∑

`=1

γij`〈Tej, T e`〉

≤
k∑

j=1

k∑

`=1

E sup
T∈T

n∑

i=1

γij`〈Tej, T e`〉

≤
k∑

j=1

k∑

`=1

E

∣∣∣∣∣
n∑

i=1

γij`

∣∣∣∣∣ sup
T∈T
‖Tej‖‖Te`‖

≤ α2k2

√
2n

π
.

Substituting these bounds into (11.18), we have

G̃n(F(xn)) ≤ 1

n

(
αk
√

8n+ α2k2 2
√
n√
π

)
≤ 5α2k2

√
n
.

Thus, applying Lemmas 11.1 and 11.3, we have

Rn(F(xn)) ≤
√
π

2
Gn(F(xn))

≤
√
π

2

[
2G̃n(F(xn)) +

√
2

π

maxT∈T
√∑n

i=1 |fT (xi)|2
n

]

≤
√
π

2

[
10α2k2

√
n

+

√
2

π

2α√
n

]

≤ 15α2k2

√
n

Recalling (11.8), we see that the event (11.2) holds with probability at least 1− δ.
For the special case of k-means clustering, i.e., when Y = {e1, . . . , ek}, we follow a slightly

different strategy. Define a zero-mean Gaussian process

ΞT :=
n∑

i=1

k∑

j=1

γij‖xi − Tej‖2, T ∈ T.

137

Then

E
[
(WT −WT ′)

2
]

=
n∑

i=1

(
min

1≤j≤k
‖xi − Tej‖2 − min

1≤j≤k
‖i − T ′ej‖2

)2

≤
n∑

i=1

max
1≤j≤k

(
‖xi − Tej‖2 − ‖xi − T ′ej‖2

)2

≤
n∑

i=1

k∑

j=1

(
‖xi − Tej‖2 − ‖xi − T ′ej‖2

)2

= E
[
(ΞT − ΞT ′)

2
]
.

For the process (ΞT), we have

E sup
T∈T

ΞT = E sup
T∈T

n∑

i=1

k∑

j=1

γij‖xi − Tej‖2

= E sup
T∈T

n∑

i=1

k∑

j=1

γij
{
‖xi‖2 − 2〈xi, T ej〉+ ‖Tej‖2

}

≤
k∑

j=1

E sup
T∈T

{
2

n∑

i=1

γij|〈xi, T ej〉|+
n∑

i=1

γij‖Tej‖2

}

≤ 3kα2
√
n,

where the methods used to obtain this bound are similar to what we did for (VT) and (UT).
Using Lemmas 11.1–11.3, we have

Rn(F(xn)) ≤
√
π

2
Gn(F(xn))

≤
√
π

2

[
2G̃n(F(xn)) +

√
2

π

maxT∈T
√∑n

i=1 |fT (xi)|2
n

]

≤
√
π

2

[
6α2k√
n

+

√
2

π

2α√
n

]

≤ 10α2k√
n
.

Again, recalling (11.8), we see that the event (11.3) occurs with probability at least 1 − δ.
The proof of Theorem 11.1 is complete.

11.3. Linear operators between Hilbert spaces

We assume, for simplicity, that all Hilbert spaces H of interest are separable. By def-
inition, a Hilbert space H is separable if it has a countable dense subset: there exists a
countable set {h1, h2, . . .} ⊂ H, such that for any h ∈ H and any ε > 0 there exists some
j ∈ N, for which ‖h − hj‖H < ε. Any separable Hilbert space H has a countable complete
and orthonormal basis, i.e., a countable set {ϕ1, ϕ2, . . .} ⊂ H with the following properties:

138

(1) Orthonormality — 〈ϕi, ϕj〉H = δij;
(2) Completeness — if there exists some h ∈ H which is orthogonal to all ϕj’s, i.e.,
〈h, ϕj〉 = 0 for all j, then h = 0.

As a consequence, any h ∈ H can be uniquely represented as an infinite linear combination

h =
∞∑

j=1

cjϕj, where cj = 〈h, ϕj〉H,

where the infinite series converges in norm, i.e., for any ε > 0 there exists some n ∈ N, such
that

∥∥∥∥∥ϕ−
n∑

j=1

cjϕj

∥∥∥∥∥
H

< ε.

Moreover, ‖h‖2
H =

∑∞
j=1 |cj|2.

Let H and K be two Hilbert spaces. A linear operator from H into K is a mapping
T : H→ K, such that (i) T (αh+ α′h′) = αTh+ α′Th′ for any two h, h′ ∈ H and α, α′ ∈ R.
A linear operator T : H→ K is bounded if

‖T‖H→K := sup
h∈H, h 6=0

‖Th‖K
‖h‖H

<∞.

We will denote the space of all bounded linear operators T : H → K by L(H,K). When
H = K, we will write L(H) instead. For any operator T ∈ L(H,K), we have the adjoint
operator T ∗ ∈ L(K,H), which is characterized by

〈g, Th〉K = 〈T ∗g, h〉H, ∀g ∈ K, h ∈ H.

If T ∈ L(H) has the property that T = T ∗, we say that T is self-adjoint.
Some examples:

• The identity operator on H, denoted by IH, maps each h ∈ H to itself. IH is a
self-adjoint operator with ‖IH‖ ≡ ‖IH‖H→H = 1. We will often omit the index H

and just write I.
• A projection is an operator Π ∈ L(H) satisfying Π2 = Π, i.e., Π(Πh) = Πh for any
h ∈ H. This is a bounded operator with ‖Π‖ = 1. Any projection is self-adjoint.
• An isometry is an operator T ∈ L(H,K), such that ‖Th‖K = ‖h‖H for all h ∈ H,

i.e., T preserves norms. If T is an isometry, then T ∗T = IH, while TT ∗ ∈ L(K) is a
projection. This is easy to see:

(TT ∗)(TT ∗) = T (T ∗T)T ∗ = TT ∗.

If T ∈ L(H) and T ∗ ∈ L(H) are both isometries, then T is called a unitary operator.
• If Π ∈ L(H) is a projection whose range K ⊆ H is a closed k-dimensional

subspace, then there exists an isometry T ∈ L(Rk,K), such that Π = TT ∗.
Here, Rk is a Hilbert space with the usual ‖ · ‖2 norm. To see this, let
{ψ1, . . . , ψk} ⊂ H be an orthonormal basis of K, and complete it to a countable basis
{ψ1, ψ2, . . . , ψk, ψk+1, ψk+2, . . .} for the entire H. Here, the elements of {ψj}∞j=k+1

139

are mutually orthonormal and orthogonal to {ψj}kj=1. Any h ∈ H has a unique
representation

h =
∞∑

j=1

αjψj

for some real coefficients α1, α2, With this, we can write out the action of Π
explicitly as

Πh =
k∑

j=1

αjψj.

Now consider the map T : Rk → K that takes

α = (α1, . . . , αk) ∈ Rk 7−→
k∑

j=1

αjψj.

It is easy to see that T is an isometry. Indeed,

‖Tα‖H =

∥∥∥∥∥
k∑

j=1

αjψj

∥∥∥∥∥
H

=

√√√√
k∑

j=1

α2
j = ‖α‖2.

The adjoint of T is easily computed: for any α = (α1, . . . , αk) ∈ Rk and any
h′ =

∑∞
j=1 α

′
jψj ∈ H,

〈h′, Tα〉H = 〈Πh′, Tα〉H

=

〈
k∑

j=1

α′jψj,
k∑

j=1

αjψj

〉

=
k∑

j=1

α′jαj

= 〈T ∗h′, α〉.
Since this must hold for arbitrary α ∈ Rk and h′ ∈ H′, we must have T ∗h′ =

T ∗
(∑∞

j=1 α
′
jψj

)
= (α′1, . . . , α

′
j). Now let’s compute T ∗h for any h =

∑
j αjψj:

TT ∗h = T (T ∗h)

= T

(
T ∗

(
∞∑

j=1

αjψj

))

= T ((α1, . . . , αk))

=
k∑

j=1

αjψj

= Πh.

140

CHAPTER 12

Stochastic simulation via Rademacher bootstrap

In this chapter, we will look at an application of statistical learning theory to the problem
of efficient stochastic simulation, which arises frequently in engineering design. The basic
question is as follows. Suppose we have a system with input space Z. The system has a
tunable parameter θ that lies in some set Θ. We have a performance index ` : Z×Θ→ [0, 1],
where we assume that the lower the value of `, the better the performance. Thus, if we use
the parameter setting θ ∈ Θ and apply input z ∈ Z, the performance of the corresponding
system is given by the scalar `(z, θ) ∈ [0, 1]. Now let’s suppose that the input to the system
is actually a random variable Z ∈ Z with some distribution P ∈ P(Z). Then we can define
the operating characteristic

L(θ) := EP [`(Z, θ)] ≡
∫

Z

`(z, θ)PZ(dz), θ ∈ Θ.(12.1)

The goal is to find an optimal operating point θ∗ ∈ Θ that achieves (or comes arbitrarily
close to) infθ∈Θ L(θ).

In practice, the problem of minimizing L(θ) is quite difficult for large-scale systems. First
of all, computing the integral in (12.1) may be a challenge. Secondly, we may not even know
the distribution PZ . Thirdly, there may be more than one distribution of the input, each
corresponding to different operating regimes and/or environments. For this reason, engineers
often resort to Monte Carlo simulation techniques: Assuming we can efficiently sample from
PZ , we draw a large number of independent samples Z1, Z2, . . . , Zn and compute

θ̂n = arg min
θ∈Θ

Ln(θ) ≡ arg min
θ∈Θ

1

n

n∑

i=1

`(Zi, θ),

where Ln(·) denotes the empirical version of the operating characteristic (12.1). Given an
accuracy parameter ε > 0 and a confidence parameter δ ∈ (0, 1), we simply need to draw
enough samples, so that

L(θ̂n) ≤ inf
θ∈Θ

L(θ) + ε

with probability at least 1− δ, regardless of what the true distribution PZ happens to be.
This is, of course, just another instance of the ERM algorithm we have been studying

extensively. However, there are two issues. One is how many samples we need to guarantee
that the empirically optimal operating point will be good. The other is the complexity of
actually computing an empirical minimizer.

The first issue has already come up in the course under the name of sample complexity
of learning. The second issue is often handled by relaxing the problem a bit: We choose
a probability distribution Q over Θ (assuming it can be equipped with an appropriate σ-
algebra) and, instead of minimizing L(θ) over θ ∈ Θ, set some level parameter α ∈ (0, 1),

141

and seek any θ̂ ∈ Θ, for which there exists some exceptional set Λ ⊂ Θ with Q(Λ) ≤ α, such
that

inf
θ
L(θ)− ε ≤ L(θ̂) ≤ inf

θ∈Θ\Λ
L(θ) + ε(12.2)

with probability at least 1− δ. Unless the actual optimal operating point θ∗ happens to lie
in the exceptional set Λ, we will come to within ε of the optimum with confidence at least
1 − δ. Then we just need to draw a large enough number n of samples Z1, . . . , Zn from PZ
and a large enough number m of samples θ1, . . . , θm from Q, and then compute

θ̂ = arg min
θ∈{θ1,...,θm}

Ln(θ).

In the next several lectures, we will see how statistical learning theory can be used
to develop such simulation procedures. Moreover, we will learn how to use Rademacher
averages1 to determine how many samples we need in the process of learning. The use
of statistical learning theory for simulation has been pioneered in the context of control
by M. Vidyasagar [Vid98, Vid01]; the refinement of his techniques using Rademacher
averages is due to Koltchinskii et al. [KAA+00a, KAA+00b]. We will essentially follow
their presentation, but with slightly better constants.

We will follow the following plan. First, we will revisit the abstract ERM problem and its
sample complexity. Then we will introduce a couple of refined tools pertaining to Rademacher
averages. Next, we will look at sequential algorithms for empirical approximation, in which
the sample complexity is not set a priori, but is rather determined by a data-driven stopping
rule. And, finally, we will see how these sequential algorithms can be used to develop robust
and efficient stochastic simulation strategies.

12.1. Empirical Risk Minimization: a quick review

Recall the abstract Empirical Risk Minimization problem: We have a space Z, a class P of
probability distributions over Z, and a class F of measurable functions f : Z→ [0, 1]. Given
an i.i.d. sample Zn drawn according to some unknown P ∈ P, we compute

f̂n := arg min
f∈F

Pn(f) ≡ arg min
f∈F

1

n

n∑

i=1

f(Zi).

We would like for P (f̂n) to be close to inff∈F P (f) with high probability. To that end, we
have derived the bound

P (f̂n)− inf
f∈F

P (f) ≤ 2‖Pn − P‖F,
where, as before, we have defined the uniform deviation

‖Pn − P‖F := sup
f∈F
|Pn(f)− P (f)| = sup

f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Zi)− EPf(Z)

∣∣∣∣∣ .

Hence, if n is sufficiently large so that, for every P ∈ P, ‖Pn−P‖F ≤ ε/2 with P -probability

at least 1− δ, then P (f̂n) will be ε-close to inff∈F P (f) with probability at least 1− δ. This
motivates the following definition:

1More precisely, their stochastic counterpart, in which we do not take the expectation over the
Rademacher sequence, but rather use it as a resource to aid the simulation.

142

Definition 12.1. Given the pair (F,P), an accuracy parameter ε > 0, and a confidence
parameter δ ∈ (0, 1), the sample complexity of empirical approximation is

N(ε; δ) := min

{
n ∈ N : sup

P∈P
P {‖Pn − P‖F ≥ ε} ≤ δ

}
.(12.3)

In other words, for any ε > 0 and any δ ∈ (0, 1), N(ε/2; δ) is an upper bound on the

number of samples needed to guarantee that P (f̂n) ≤ inff∈F P (f) + ε with probability
(confidence) at least 1− δ.

12.2. Empirical Rademacher averages

As before, let Zn be an i.i.d. sample of length n from some P ∈ P(Z). On multiple
occasions we have seen that the performance of the ERM algorithm is controlled by the
Rademacher average

Rn(F(Zn)) :=
1

n
Eσn

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(Zi)

∣∣∣∣∣

]
,(12.4)

where σn = (σ1, . . . , σn) is an n-tuple of i.i.d. Rademacher random variables independent of
Zn. More precisely, we have stablished the fundamental symmetrization inequality

E‖Pn − P‖F ≤ 2ERn(F(Zn)),(12.5)

as well as the concentration bounds

P {‖Pn − P‖F ≥ E‖Pn − P‖F + ε} ≤ e−2nε2(12.6)

P {‖Pn − P‖F ≤ E‖Pn − P‖F − ε} ≤ e−2nε2(12.7)

These results show two things:

(1) The uniform deviation ‖Pn − P‖F tightly concentrates around its expected value.
(2) The expected value E‖Pn − P‖F is bounded from above by ERn(F(Zn)).

It turns out that the expected Rademacher average ERn(F(Zn)) also furnishes a lower bound
on E‖Pn − P‖F:

Lemma 12.1 (Desymmetrization inequality). For any class F of measurable functions
f : Z→ [0, 1], we have

1

2
ERn(F(Zn))− 1

2
√
n
≤ 1

2n
E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi[f(Zi)− P (f)]

∣∣∣∣∣

]
≤ E‖Pn − P‖F.(12.8)

Proof. We will first prove the second inequality in (12.8). To that end, for each 1 ≤ i ≤
n and each f ∈ F, let us define Ui(f) := f(Zi) − P (f). Then EUi(f) = 0. Let Z1, . . . , Zn

be an independent copy of Z1, . . . , Zn. Then we can define U i(f), 1 ≤ i ≤ n, similarly.

143

Moreover, since EUi(f) = 0, we can write

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi[f(Zi)− P (f)]

∣∣∣∣∣

]
= E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σiUi(f)

∣∣∣∣∣

]

= E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi
[
Ui(f)− EU i(f)

]
∣∣∣∣∣

]

≤ E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi[Ui(f)− U i(f)]

∣∣∣∣∣

]
.

Since, for each i, Ui(f) and U i(f) are i.i.d., the difference Ui(f) − U i(f) is a symmetric
random variable. Therefore,

{
σi[Ui(f)− U i(f)] : 1 ≤ i ≤ n

} (d)
=
{
Ui(f)− U i(f) : 1 ≤ i ≤ n

}
.

Using this fact and the triangle inequality, we get

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi[Ui(f)− U i(f)]

∣∣∣∣∣

]
= E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

[Ui(f)− U i(f)]

∣∣∣∣∣

]

≤ 2E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

Ui(f)

∣∣∣∣∣

]

= 2E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

|f(Zi)− P (f)

∣∣∣∣∣

]

= 2n · E‖Pn − P‖F.
To prove the first inequality in (12.8), we write

ERn(F(Zn)) =
1

n
E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi [f(Zi)− P (f) + P (f)]

∣∣∣∣∣

]

≤ 1

n
E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi[f(Zi)− P (f)]

∣∣∣∣∣

]
+

1

n
E

[
sup
f∈F

P (f) ·
∣∣∣∣∣
n∑

i=1

σi

∣∣∣∣∣

]

=
1

n
E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi[f(Zi)− P (f)]

∣∣∣∣∣

]
+

1

n
E

∣∣∣∣∣
n∑

i=1

σi

∣∣∣∣∣

≤ 1

n
E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi[f(Zi)− P (f)]

∣∣∣∣∣

]
+

1√
n
.

Rearranging, we get the desired inequality. �

In this section, we will see that we can get a lot of mileage out of the stochastic version
of the Rademacher average. To that end, let us define

rn(F(Zn)) :=
1

n
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(Zi)

∣∣∣∣∣ .(12.9)

144

The key difference between (12.4) and (12.9) is that, in the latter, we do not take the expec-
tation over the Rademacher sequence σn. In other words, both Rn(F(Zn)) and rn(F(Zn))
are random variables, but the former depends only on the training data Zn, while the latter
also depends on the n Rademacher random variables σ1, . . . , σn. We see immediately that
Rn(F(Zn)) = E[rn(F(Zn))|Zn] and ERn(F(Zn)) = Ern(F(Zn)), where the expectation on
the right-hand side is over both Zn and σn. The following result will be useful:

Lemma 12.2 (Concentration inequalities for Rademacher averages). For any ε > 0,

P {rn(F(Zn)) ≥ ERn(F(Zn)) + ε} ≤ e−nε
2/2(12.10)

and

P {rn(F(Zn)) ≤ ERn(F(Zn))− ε} ≤ e−nε
2/2.(12.11)

Proof. For each 1 ≤ i ≤ n, let Ui := (Zi, σi). Then rn(F(Zn)) can be represented as
a real-valued function g(Un). Moreover, it is easy to see that this function has bounded
differences with c1 = . . . = cn = 2/n. Hence, McDiarmid’s inequality tells us that for any
ε > 0

P {g(Un) ≥ Eg(Un) + ε} ≤ e−nε
2/2,

and the same holds for the probability that g(Un) ≤ Eg(Un) − ε. This completes the
proof. �

12.3. Sequential learning algorithms

In a sequential learning algorithm, the sample complexity is a random variable. It is
not known in advance, but rather is computed from data in the process of learning. In
other words, instead of using a training sequence of fixed length, we keep drawing indepen-
dent samples until we decide that we have acquired enough of them, and then compute an
empirical risk minimizer.

To formalize this idea, we need the notion of a stopping time. Let {Un}∞n=1 be a random
process. A random variable τ taking values in N is called a stopping time if and only if, for
each n ≥ 1, the occurrence of the event {τ = n} is determined by Un = (U1, . . . , Un). More
precisely:

Definition 12.2. For each n, let Σn denote the σ-algebra generated by Un (in other
words, Σn consists of all events that occur by time n). Then a random variable τ taking
values in N is a stopping time if and only if, for each n ≥ 1, the event {τ = n} ∈ Σn.

In other words, denoting by U∞ the entire sample path (U1, U2, . . .) of our random process,
we can view τ as a function that maps U∞ into N. For each n, the indicator function of the
event {τ = n} is a function of U∞:

1{τ=n} ≡ 1{τ(U∞)=n}.

Then τ is a stopping time if and only if, for each n and for all U∞, V ∞ with Un = V n we
have

1{τ(U∞)=n} = 1{τ(V∞)=n}.

Our sequential learning algorithms will work as follows. Given a desired accuracy pa-
rameter ε > 0 and a confidence parameter δ > 0, let n(ε, δ) be the initial sample size; we

145

will assume that n(ε, δ) is a nonincreasing function of both ε and δ. Let T(ε, δ) denote the
set of all stopping times τ such that

sup
P∈P

P {‖Pτ − P‖F ≤ ε} ≥ δ.

Now if τ ∈ T(ε, δ) and we let

f̂τ := arg min
f∈F

Pτ (f) ≡ arg min
f∈F

1

τ

τ∑

i=1

f(Zi),

then we immediately see that

sup
P∈P

{
P (f̂τ) ≥ inf

f∈F
P (f) + 2ε

}
≤ δ.

Of course, the whole question is how to construct an appropriate stopping time without
knowing P .

Definition 12.3. A parametric family of stopping times {ν(ε, δ) : ε > 0, δ ∈ (0, 1)} is
called strongly efficient (SE) (w.r.t. F and P) if there exist constants K1, K2, K3 ≥ 1, such
that for all ε > 0, δ ∈ (0, 1)

ν(ε, δ) ∈ T(K1ε, δ)(12.12)

and for all τ ∈ T(ε, δ)

sup
P∈P

P {ν(K2ε, δ) > τ} ≤ K3δ.(12.13)

In other words, Eq. (12.12) says that any SE stopping time {ν(ε, δ)} guarantees that we
can approximate statistical expectations by empirical expectations with accuracy K1ε and
confidence 1 − δ; similarly, Eq. (12.13) says that, with probability at least 1 − K3δ, we
will require at most as many samples as would be needed by any sequential algorithm for
empirical approximation with accuracy ε/K2 and confidence 1− δ.

Definition 12.4. A family of stopping times {ν(ε, δ) : ε > 0, δ ∈ (0, 1)} is weakly
efficient (WE) for (F,P) if there exist constants K1, K2, K3 ≥ 1, such that for all ε > 0, δ ∈
(0, 1)

ν(ε, δ) ∈ T(K1ε, δ)(12.14)

and

sup
P∈P

P {ν(K2ε, δ) > N(ε; δ)} ≤ K3δ.(12.15)

If ν(ε, δ) is a WE stopping time, then Eq. (12.14) says that we can solve the empirical
approximation problem with accuracy K1ε and confidence 1− δ; Eq. (12.15) says that, with
probability at most 1− δ, the sample complexity will be less than the sample complexity of
empirical approximation with accuracy ε/K2 and confidence 1− δ.

If N(ε; δ) ≥ n(ε, δ), then N(ε, δ) ∈ T(ε, δ). Hence, any WE stopping time is also SE.
The converse, however, is not true.

146

12.3.1. A strongly efficient sequential learning algorithm. Let {Zn}∞n=1 be an
infinite sequence of i.i.d. draws from some P ∈ P; let {σn}∞n=1 be an i.i.d. Rademacher
sequence independent of {Zn}. Choose

n(ε, δ) ≥
⌊

2

ε2
log

2

δ(1− e−ε2/2)

⌋
+ 1(12.16)

and let

ν(ε, δ) := min {n ≥ n(ε, δ) : rn(F(Zn)) ≤ ε} .(12.17)

This is clearly a stopping time for each ε > 0 and each δ ∈ (0, 1).

Theorem 12.1. The family {ν(ε, δ) : ε > 0, δ ∈ (0, 1)} defined in (12.17) with n(ε, δ)
set according to (12.16) is SE for any class F of measurable functions f : Z → [0, 1] and
P = P(Z) with K1 = 5, K2 = 6, K3 = 1.

Proof. Let n = n(ε, δ). We will first show that, for any P ∈ P(Z),

‖Pn − P‖F ≤ 2rn(F(Zn)) + 3ε, ∀n ≥ n(12.18)

with probability at least 1 − δ. Since for n = ν(ε, δ) ≥ n we have rn(F(Zn)) ≤ ε, we will
immediately be able to conclude that

P
{
‖Pν(ε,δ) − P‖F ≥ 5ε

}
≤ δ,

which will imply that ν(ε, δ) ∈ T(5ε, δ). Now we prove (12.18). First of all, applying
Lemma 12.2 and the union bound, we can write

P

{⋃

n≥n

{rn(F(Zn)) ≥ ERn(F(Zn)) + ε}
}
≤
∑

n≥n

e−nε
2/2

= e−nε
2/2
∑

n≥0

e−nε
2/2

=
e−nε

2/2

1− e−ε2/2
≤ δ/2.

From the symmetrization inequality (12.5), we know that E‖Pn − P‖F ≤ 2ERn(F(Zn)).
Moreover, using (12.6) and the union bound, we can write

P

{⋃

n≥n

{‖Pn − P‖F ≥ E‖Pn − P‖F + ε}
}
≤
∑

n≥n

e−2nε2

≤
∑

n≥n

e−nε
2/2

≤ δ/2.

Therefore, with probability at least 1− δ,
‖Pn − P‖F ≤ E‖Pn − P‖F + ε ≤ 2ERn(F(Zn)) + ε ≤ 2rn(F(Zn)) + 3ε, ∀n ≥ n

which is (12.18). This shows that (12.12) holds for ν(ε, δ) with K1 = 5.

147

Next, we will prove that, for any P ∈ P(Z),

P

{
min

n≤n<ν(6ε,δ)
‖Pn − P‖F < ε

}
≤ δ.(12.19)

In other words, (12.19) says that, with probability at least 1 − δ, ‖Pn − P‖F ≥ ε for all
n ≤ n < ν(6ε, δ). This means that, for any τ ∈ T(ε, δ), ν(6ε, δ) ≤ τ with probability at least
1− δ, which will give us (12.13) with K2 = 6 and K3 = 1.

To prove (12.19), we have by (12.7) and the union bound that

P

{⋃

n≥n

{‖Pn − P‖F ≤ E‖Pn − P‖F − ε}
}
≤ δ/2.

By the desymmetrization inequality (12.8), we have

E‖Pn − P‖F ≥
1

2
ERn(F(Zn))− 1

2
√
n
, ∀n.

Finally, by the concentration inequality (12.10) and the union bound,

P

{⋃

n≥n

{rn(F(Zn)) ≥ ERn(F(Zn)) + ε}
}
≤ δ/2.

Therefore, with probability at least 1− δ,

‖Pn − P‖F ≥
1

2
rn(F(Zn))− 1

2
√
n
− 3ε

2
, ∀n ≥ n.

If n ≤ n < ν(6ε, δ), then rn(F(Zn)) > 6ε. Therefore, using the fact that n ≥ n and
n(ε, δ)−1/2 ≤ ε, we see that, with probability at least 1− δ,

‖Pn − P‖F >
3ε

2
− 1

2
√
n
≥ 3ε

2
− 1

2
√
n
≥ ε, n ≤ n < ν(6ε, δ).

This proves (12.19), and we are done. �

12.3.2. A weakly efficient sequential learning algorithm. Now choose

n(ε, δ) ≥
⌊

2

ε2
log

4

δ

⌋
+ 1,(12.20)

for each k = 0, 1, 2, . . . let nk := 2kn(ε, δ), and let

ν(ε, δ) := min {nk : rnk(F(Znk)) ≤ ε} .(12.21)

Theorem 12.2. The family {ν(ε, δ) : ε > 0, δ ∈ (0, 1/2)} defined in (12.21) with n(ε, δ)
set according to (12.20) is WE for any class F of measurable functions f : Z → [0, 1] and
P = P(Z) with K1 = 5, K2 = 18, K3 = 3.

148

Proof. As before, let n = n(ε, δ). The proof of (12.14) is similar to what we have done
in the proof of Theorem 12.1, except we use the bounds

P

{
∞⋃

k=0

{rnk(F(Znk)) ≥ ERnk(F(Znk)) + ε}
}
≤

∞∑

k=0

e−2knε2/2

= e−nε
2/2 + e−nε

2/2

∞∑

k=1

e−
nε2

2
(2k−1)

≤ e−nε
2/2 + e−nε

2/2

∞∑

k=1

e−(2k−1)

≤ e−nε
2/2 + e−nε

2/2

∞∑

k=1

e−k

≤ 2e−nε
2/2

≤ δ/2,

where in the third step we have used the fact that nε2/2 ≥ 1. Similarly,

P

{
∞⋃

k=0

{‖Pnk − P‖F ≤ E‖Pnk − P‖F + ε}
}
≤ δ2.

Therefore,

‖Pnk − P‖F ≤ 2rnk(F(Znk)) + 3ε, ∀k = 0, 1, 2, . . .

and consequently

P
{
‖Pν(ε,δ) − P‖F ≥ 5ε

}
≤ δ,

which proves (12.14).
Now we prove (12.15). Let N = N(ε, δ), the sample complexity of empirical approxi-

mation that we have defined in (12.3). Let us choose k so that nk ≤ N < nk+1, which is
equivalent to 2kn ≤ N < 2k+1n. Then

P {ν(18ε, δ) > N} ≤ P {ν(18ε, δ) > nk} .
We will show that the probability on the right-hand side is less than 3δ. First of all, since
N ≥ n (by hypothesis), we have nk ≥ n/2 ≥ 1/ε2. Therefore, with probability at least 1− δ

‖Pnk − P‖F ≥
1

2
rnk(F(Znk))− 1

2
√
nk
− 9ε

2
≥ 1

2
rnk(F(Znk))− 5ε.(12.22)

If ν(18ε, δ) > nk, then by definition rnk(F(Znk)) > 18ε. Writing rnk = rnk(F(Znk)) for
brevity, we see get

P {ν(18ε, δ) > nk} ≤ P {rnk > 18ε}
= P {rnk > 18ε, ‖Pnk − P‖F ≥ 18ε}+ P {rnk > 18ε, ‖Pnk − P‖F < 4ε}
≤ P {‖Pnk − P‖F ≥ 4ε}+ P {rnk > 18ε, ‖Pnk − P‖F < 4ε} .

149

If rnk > 18ε but ‖Pnk − P‖F < 4ε, the event in (12.22) cannot occur. Indeed, suppose it
does. Then it must be the case that 4ε > 9ε− 5ε = 4ε, which is a contradiction. Therefore,

P {rnk > 18ε, ‖Pnk − P‖F < 4ε} ≤ δ,

and hence

P {ν(18ε, δ) > nk} ≤ P {‖Pnk − P‖F ≥ 4ε}+ δ.

For each f ∈ F and each n ∈ N define

Sn(f) :=
n∑

i=1

[f(Zi)− P (f)]

and let ‖Sn‖F := supf∈F |Sn(f)|. Then

P {‖Pnk − P‖F ≥ 4ε} = P {‖Snk‖F ≥ 4εnk} ≤ P {‖Snk‖F ≥ 2εN} .
Since nk ≤ N , the F-indexed stochastic processes Snk(f) and SN(f)−Snk(f) are independent.
Therefore, we use a technical result stated as Lemma 12.4 in the appendix with ξ1 = Snk
and ξ2 = SN(f)− Snk(f) to write

P {‖Snk‖F ≥ 2εN} ≤ P {‖SN‖F ≥ εN}
inff∈F P {|SN(f)− Snk(f)| ≤ εN} .

By definition of N = N(ε, δ), the probability in the numerator is at most δ. To analyze the
probability in the denominator, we use Hoeffding’s inequality to get

inf
f∈F

P {|SN(f)− Snk(f)| ≤ εN} = 1− sup
f∈F

P {|SN(f)− Snk(f)| > εN}

≥ 1− 2e−Nε
2/2

≥ 1− δ.
Therefore,

P {ν(18ε, δ) > nk} ≤
δ

1− δ + δ ≤ 3δ

for δ < 1/2. Therefore, {ν(ε, δ) : ε ∈ (0, 1), δ ∈ (0, 1/2)} is WE with K1 = 5, K2 = 18, K3 =
3. �

12.4. A sequential algorithm for stochastic simulation

Armed with these results on sequential learning algorithms, we can take up the question of
constructing efficient simulation strategies. We fix an accuracy parameter ε > 0, a confidence
parameter δ ∈ (0, 1), and a level parameter α ∈ (0, 1). Given two probability distributions,
P on the input space Z and Q on the parameter space Θ, we draw a large i.i.d. sample
Z1, . . . , Zn from P and a large i.i.d. sample θ1, . . . , θm from Q. We then compute

θ̂ = arg min
θ∈{θ1,...,θm

Ln(θ),

where

Ln(θ) :=
1

n

n∑

i=1

`(Zi, θ).

150

The goal is to pick n and m large enough so that, with probability at least 1 − δ, θ̂ is an
ε-minimizer of L to level α, i.e., with probability at least 1− δ there exists some set Λ ⊂ Θ
with Q(Λ) ≤ α, such that Eq. (12.2) holds with probability at least 1− δ.

To that end, consider the following algorithm based on Theorem 12.2, proposed by
Koltchinskii et al. [KAA+00a, KAA+00b]:

Algorithm 1
choose positive integers m and n such that

m ≥ log(2/δ)
log[1/(1−α)]

and n ≥ b50
ε2

log 8
δ
c+ 1

draw m independent samples θ1, . . . , θm from Q
draw n independent samples Z1, . . . , Zn from PZ
evaluate the stopping variable
γ = max1≤j≤m

∣∣ 1
n

∑n
i=1 σi`(Zi, θj)

∣∣
where σ1, . . . , σn are i.i.d. Rademacher r.v.’s independent of θm and Zn

if γ > ε/5, then
add n more i.i.d. samples from PZ and repeat

else stop and output

θ̂ = arg minθ∈{θ1,...,θn} Ln(θ)

Then we claim that, with probability at least 1− δ, θ̂ is an ε-minimizer of L to level α. To
see this, we need the following result [Vid03, Lemma 11.1]:

Lemma 12.3. Let Q be a probability distribution on the parameter set Θ, and let h : Θ→
R be a (measurable) real-valued function on Θ, bounded from above, i.e., h(θ) < +∞ for all
θ ∈ Θ. Let θ1, . . . , θm be m i.i.d. samples from Q, and let

h̄(θm) := max
1≤j≤m

h(θm).

Then for any α ∈ (0, 1)

Q
({
θ ∈ Θ : h(θ) > h̄(θm)

})
≤ α(12.23)

with probability at least 1− (1− α)m.

Proof. For each c ∈ R, let

F (c) := P ({θ ∈ Θ : h(θ) ≤ c}) .
Note that F is the CDF of the random variable ξ = h(θ) with θ ∼ Q. Therefore, it is
right-continuous, i.e., limc′↘c F (c′) = F (c). Now define

cα := inf {c : F (c) ≥ 1− α} .
Since F is right-continuous, F (cα) ≥ 1−α. Moreover, if c < cα, then F (c) < 1−α. Now let
us suppose that h̄(θm) ≥ cα. Then, since F is monotone nondecreasing,

P
({
θ ∈ Θ : h(θ) ≤ h̄(θm)

})
= F

(
h̄(θm)

)
≥ F (cα) ≥ 1− α,

or, equivalently, if h̄(θm) ≥ cα, then

P
({
θ ∈ Θ : h(θ) > h̄(θm)

})
≤ α.

151

Therefore, if θm is such that

P
({
θ ∈ Θ : h(θ) > h̄(θm)

})
> α,

then it must be the case that h̄(θm) < cα, which in turn implies that F (h̄(θm)) < 1 − α,
the complement of the event in (12.23). But h̄(θm) < cα means that h(θj) < cα for every
1 ≤ j ≤ m. Since the θj’s are independent, the events {h(θj) < cα} are independent, and
each occurs with probability at most 1− α. Therefore,

P
({
θm ∈ Θm : Q

({
θ ∈ Θ : h(θ) > h̄(θm)

})})
≤ (1− α)m,

which is what we intended to prove. �

We apply this lemma to the function h(θ) = −L(θ). Then, provided m is chosen as described
in Algorithm 1, we will have

Q

({
θ ∈ Θ : L(θ) < min

1≤j≤j
L(θm)

})
≤ δ/2.

Now consider the finite class of functions F = {fj(z) = `(z, θj) : 1 ≤ j ≤ m}. By Theo-

rem 12.2, the final output θ̂ ∈ {θ1, . . . , θm} will satisfy
∣∣∣∣L(θ̂)− min

1≤j≤m
L(θj)

∣∣∣∣ ≤ ε

with probability at least 1 − δ/2. Hence, with probability at least 1 − δ there exists a set
Λ ⊂ Θ with Q(Λ) ≤ α, such that (12.2) holds. Moreover, the total number of samples used
up by Algorithm 1 will be, with probability at least 1− 3δ/2, no more than

NF,PZ (ε/18, δ/2) ≡ min {n ∈ N : P (‖Pn − PZ‖F > ε/18) < δ/2} .
We can estimate NF,PZ (ε/18, δ/2) as follows. First of all, the function

∆(Zn) := ‖Pn − PZ‖F ≡ max
1≤j≤m

|Pn(fj)− PZ(fj)|

has bounded differences with c1 = . . . = cn = 1/n. Therefore, by McDiarmid’s inequality

P (∆(Zn) ≥ E∆(Zn) + t) ≤ e−2nt2 , ∀t > 0.

Secondly, since the class F is finite with |F| = m, the symmetrization inequality (12.5) and
the Finite Class Lemma give the bound

E‖Pn − PZ‖F ≤ 4

√
logm

n
.

Therefore, if we choose t = ε/18−4
√
n−1 logm and n is large enough so that t > ε/20 (say),

then
P (‖Pn − P‖F > ε/18) ≤ e−nε

2/200.

Hence, a fairly conservative estimate is

NF,PZ (ε/18, δ/2) ≤ max

{⌊
200

ε2
log

2

δ

⌋
+ 1,

⌊(
720

ε

)2

logm

⌋
+ 1

}

It is instructive to compare Algorithm 1 with a simple Monte Carlo strategy:

152

Algorithm 0
choose positive integers m and n such that

m ≥ log(2/δ)
log[1/(1−α)]

and n ≥ 1
2ε2

log 4m
δ

draw m independent samples θ1, . . . , θm from Q
draw n independent samples Z1, . . . , Zn from PZ
for j = 1 to m

compute Ln(θj) = 1
n

∑n
i=1 `(Zi, θj)

end for

output θ̂ = arg minθ∈{θ1,...,θm Ln(θj)

The selection of m is guided by the same considerations as in Algorithm 1. Moreover, for
each 1 ≤ j ≤ m, Ln(θj) is an average of n independent random variables `(Zi, θj) ∈ [0, 1],
and L(θj) = ELn(θj). Hence, Hoeffding’s inequality says that

P ({Zn ∈ Zn : |Ln(θj)− L(θj)| > ε}) ≤ 2e−2nε2 .

If we choose n as described in Algorithm 0, then

P

(∣∣∣∣Ln(θ̂)− min
1≤j≤m

L(θj)

∣∣∣∣ > ε

)
≤ P

(
m⋃

j=1

|Ln(θj)− L(θj)| > ε

)

≤
m∑

j=1

P (|Ln(θj)− L(θj)| > ε)

≤ δ/2.

Hence, with probability at least 1− δ there exists a set Λ ⊂ Θ with Q(Λ) ≤ α, so that (12.2)
holds. It may seem at first glance that Algorithm 0 is more efficient than Algorithm 1.
However, this is not the case in high-dimensional situations. There, one can actually show
that, with probability practically equal to one, the empirical minimum of L can be much
larger than the true minimum (cf. [KAA+00b] for a very vivid numerical illustration).
This is an instance of the so-called Curse of Dimensionality, which adaptive schemes like
Algorithm 1 can often avoid.

12.5. Technical lemma

Lemma 12.4. Let {ξ1(f) : f ∈ F} and {ξ2(f) : f ∈ F} be two independent F-indexed
stochastic processes with

‖ξj‖F := sup
f∈F
|ξj(f)| <∞, j = 1, 2.

Then for all t > 0, c > 0

P {‖ξ1‖F ≥ t+ c} ≤ P {‖ξ1 − ξ2‖F ≥ t}
inff∈F P {|ξ2(f)| ≤ c} .(12.24)

Proof. If ‖ξ1‖F ≥ t + c, then there exists some f ∈ F, such that |ξ1(f)| ≥ t + c. Then
for this particular f by the triangle inequality we see that

|ξ2(f)| ≤ c ⇒ |ξ1(f)− ξ2(f)| ≥ t

153

Therefore,

inf
f∈F

Pξ2

{
|ξ2(f)| ≤ c

}
≤ Pξ2

{
|ξ2(f)| ≤ c

}
≤ Pξ2

{
|ξ1(f)− ξ2(f)| ≥ t

}
≤ Pξ2

{
‖ξ1−ξ2‖F ≥ t

}
.

The leftmost and the rightmost terms in the above inequality do not depend on the particular
f , and the inequality between them is valid on the event {‖ξ1‖F ≥ t + c}. Therefore,
integrating the two sides w.r.t. ξ1 on this event, we get

inf
f∈F

Pξ2

{
|ξ2(f)| ≤ c

}
·Pξ1

{
‖ξ1‖F ≥ t+ c

}
≤ Pξ1,ξ2

{
‖ξ1 − ξ2‖F ≥ t

}
.

Rearranging, we get (12.24). �

154

Part 4

Advanced Topics

CHAPTER 13

Stability of learning algorithms

Recall the abstract formulation of the learning problem in Section 6.1: we have a collec-
tion Z1, . . . , Zn of i.i.d. samples from some unknown distribution P on a set Z and a class
F of functions f : Z→ [0, 1]. A learning algorithm is a sequence A = {An}∞n=1 of mappings
An : Zn → F that take training data as input and generate functions in F as output. We
say that A is consistent if

L(f̂n) =

∫

Z

f̂n(z)P (dz), f̂n = An(Zn)

converges in some sense to L∗ = inff∈F L(f), for any P . If a consistent algorithm exists,
we say that the problem is learnable. Early on (see Theorem 5.3, which is essentially an
application of the mismatched minimization lemma, Lemma 5.1), we have identified a suffi-
cient condition for the existence of a consistent learning algorithm: uniform convergence of
empirical means (UCEM). One way of stating the UCEM property is to require that

sup
P

EP‖Pn − P‖F n→∞−−−→ 0,(13.1)

where the expectation is with respect to an i.i.d. process Z1, Z2, . . . with common marginal
distribution P , Pn is the empirical distribution based on the first n samples of the process:

Pn =
1

n

n∑

i=1

δZi ,

and ‖ · ‖F is the seminorm defined by ‖P − P ′‖F := supf∈F |P (f) − P ′(f)|. By the method
of Theorem 5.3 we know that, if F satisfies (13.1), then the ERM algorithm

f̂n = arg min
f∈F

1

n

n∑

i=1

f(Zi)

is consistent. In some cases, the UCEM property is both necessary and sufficient for learn-
ability — for example, in the binary classification setting, where Z = (X, Y) with arbitrary
X, Y ∈ {0, 1}, and f(Z) = f(X, Y) taking values in {0, 1}.

However, it is easy to see that, in general, one can have learnability without the UCEM
property. For example, suppose that the function class F is such that one can find a function

f̃ 6∈ F with the property that f̃(z) < inff∈F f(z) for every z ∈ Z. Consider now a modified

class F̃ = F ∪ {f̃} obtained by adding f̃ to F. Then the ERM algorithm over F̃ will always

return f̃ , and moreover L(f̃) ≡ L∗(F̃). Thus, not only do we have consistency, but we also
have perfect generalization, and the only condition the original class F has to satisfy is that

we can find at least one f̃ with the desired property. Of course, this imposes some minimal
richness requirements on the ranges of all functions in F — for example, we could not pull

156

this off when the functions in F are binary valued. And yet, the UCEM property is not
required for perfect learnability!

So, what’s going on here? It turns out that the main attraction of the UCEM property
– namely, its algorithm-independence – is also its main disadvantage. Learnability is closely
tied up with properties of learning algorithms: how well can they generalize? How good
are they at rejecting obviously bad hypotheses and focusing on good ones? Thus, our goal
is to connect learnability to certain properties of learning algorithms. This lecture is based
primarily on a paper by Shalev-Shwartz et al. [SSSS10].

13.1. An in-depth view of learning algorithms

We adopt yet another abstract framework for machine learning in this section, first
introduced by Vapnik (1995). A learning problem is denoted by (Z,P,F, `), where

• Z represents a set of possible values of data samples
• P is a set of probability distributions for Z-valued random variables
• F is a nonempty, closed, convex subset of a Hilbert space H

• ` : F × Z→ R is a loss function; `(f, z) is the loss for using f on sample z.

This notation is rather flexible:

• F could be a set of functions on Z. For example, we could have `(f, z) = f(z), in
which case, for a given P ∈ P, we would be seeking to select f to minimize EP [f]
as in the abstract framework for ERM introduced in Section 6.1.
• It could be that Z = X × Y, and a sample z = (x, y) represents a feature vector x

and a label y. (This is the case for the next three examples.)
• We could consider `(f, (x, y)) = ϕ(−yf(x)), where ϕ is a penalty function, and then
` represents surrogate loss.
• Or `(f, (x, y)) = (y − f(x))2, for the problem of regression with quadratic loss.
• The elements of F could also be considered as vectors of scalar parameters, with the

number of such parameters equal to the dimension of the Hilbert space H containing
F. The loss function could correspond, for example, to a support vector machine
type classifier, `(f, (x, y)) = ϕ(−y〈f, ψ(x)〉), where ψ : X → H maps an unlabeled
data sample x to a feature vector ψ(x).

For the examples above, if the penalty function ϕ is convex, then `(f, z) is a convex function
of f for each fixed z. We will still use the notation

LP (f) = EP [`(f, Z)] ≡
∫

Z

`(f, z)P (dz)

for the expected loss of f with respect to P , and will often omit the subscript P when it’s
clear from context. Given an n-tuple Zn = (Z1, . . . , Zn) of i.i.d. samples from P , we have
the empirical loss

Ln(f) =
1

n

n∑

i=1

`(f, Zi).

Finally, we define the minimum risk and empirical minimum risk by:

L∗(F) := inf
f∈F

L(f) and L∗n(F) := inf
f∈F

Ln(f).

157

Here, L∗(F) is a deterministic quantity that depends on `, F, and the underlying distribution
P , whereas L∗n(F) is a random variable.

Also, let us define Z∗ :=
⋃∞
n=1 Z

n, i.e., Z∗ is the collection of all tuples over Z. This
definition allows us to treat a learning algorithm as a single mapping A : Z∗ → F — the size
of the training set is now clear from context. For example, A(Zn) is the output of A fed
with an n-tuple Zn = (Z1, . . . , Zn), and so, in particular,

L(A(Zn)) =

∫

Z

`(A(Zn), z)P (dz)

is the expected loss of the function A(Zn) ∈ F on a fresh sample Z ∼ P , independent of Zn.
In contrast, Ln(A(Zn)), given by

Ln(A(Zn)) =
1

n

n∑

i=1

`(A(Zn), Zi),

is the empirical loss of the algorithm output A(Zn) on the same sample Zn that was supplied
to A.

Our goal is to understand what makes a good learning algorithm. To keep things simple,
we will focus on expected-value guarantees. We say that a learning algorithm A is consistent
if

cn(A) := sup
P

EP [L(A(Zn))− L∗] n→∞−−−→ 0.(13.2)

We say that the learning problem specified by ` and F is learnable if there exists at least
one consistent learning algorithm A. As we have already seen on multiple occasions, under
certain conditions the ERM algorithm is consistent. A learning algorithm A is an Asymptotic
Empirical Risk Minimizer (AERM) if

en(A) := sup
P

EP [Ln(A(Zn))− L∗n]
n→∞−−−→ 0.(13.3)

Of course, if A is an exact ERM algorithm, then en(A) = 0 for all n, but there are many
situations in which it is preferable to use AERM algorithms. Next, we say that A generalizes
if

gn(A) := sup
P

EP |L(A(Zn))− Ln(A(Zn))| n→∞−−−→ 0.(13.4)

A weaker notion of generalization is as follows: A generalizes on average if

ḡn(A) := sup
P
|EP [L(A(Zn))− Ln(A(Zn))]| n→∞−−−→ 0.(13.5)

Our goal is to show, without requiring the UCEM property, that learnability is possible.
Instead of relying on the UCEM property, we will investigate the relationship between the
above properties of learning algorithms to stability, i.e., weak dependence of the algorithm
output on any individual training sample. (We don’t focus on examples such that the UCEM
property provably does not hold – it is in fact not easy to come up with realistic examples
for which UCEM can be disproved and yet consistency can be proved. The main point in
this chapter is to not use the UCEM property in the proof of consistency.)

158

13.2. Learnability without uniform convergence

We now show that we can prove learnability without assuming uniform convergence:

Theorem 13.1. Suppose F is a convex subset of a Hilbert space H, and suppose there
are constants L,m > 0, such that, for every z ∈ Z, the function f 7→ `(f, z) is m-strongly
convex and L-Lipschitz. Then the ERM algorithm

f̂n = A(Zn) = arg min
f∈F

1

n

n∑

i=1

`(f, Zi)

is such that

L(f̂n)− L∗ ≤ 2L2

δmn
,

with probability at least 1− δ.
If the mapping f 7→ `(f, z) is convex but not strongly convex, a variation of Theorem

13.1 can be obtained by using an additive regularization term, as described at the end of the
section.

Proof. The idea is to compare the output of A on the original training data Zn to the
output of A on the modified data, with one of the training samples replaced. Specifically,
let Z ′1, . . . , Z

′
n be n i.i.d. samples from P , independent of Zn. For each i, define the modified

training data

Zn
(i) := (Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zn).

For any f ∈ F, consider the original and the perturbed empirical risks:

Ln(f) :=
1

n

n∑

i=1

`(f, Zi)

L(i)
n (f) :=

1

n
`(f, Z ′i) +

1

n

∑

j: j 6=i

`(f, Zj)

= Ln(f) +
1

n

(
`(f, Z ′i)− `(f, Zi)

)
,

Likewise, consider the ERM solutions for the original and the perturbed data:

f̂n := arg min
f∈F

Ln(f), f̂ (i)
n := arg min

f∈F
L(i)
n (f).

The function f 7→ 1
n

(`(f, Z ′i)− `(f, Zi)) is 2L
n

-Lipschitz. Hence, by the stability of minimizers
of strongly convex functions under Lipschitz perturbations (Lemma 3.2).

‖f̂n − f̂ (i)
n ‖ ≤

2L

mn
.(13.6)

In other words, arbitrarily replacing any one sample in Zn by some other Z ′i has only limited
effect on the ERM solution, i.e., the algorithm output A(Zn) does not depend too much on
any individual sample! But, because ` is Lipschitz, this implies that, for any z ∈ Z,

∣∣∣`(f̂n, z)− `(f̂ (i)
n , z)

∣∣∣ ≤ L‖f̂n − f̂ (i)
n ‖ ≤

2L2

mn
.(13.7)

159

We now claim that the stability property (13.7) implies

E
[
L(f̂n)− Ln(f̂n)

]
≤ 2L2

mn
.(13.8)

Indeed, since f̂n is a function of Zn, and since Z ′1, . . . , Z
′
n are independent of Z1, . . . , Zn and

are draws from the same distribution, we can write

EL(f̂n) =
1

n

n∑

i=1

E[`(f̂n, Z
′
i)].

On the other hand, since, for every i, `(f̂n, Zn) and `(f̂
(i)
n , Z ′i) have the same distribution, we

have

ELn(f̂n) =
1

n

n∑

i=1

E[`(f̂n, Zi)] =
1

n

n∑

i=1

E[`(f̂ (i)
n , Z ′i)]

Therefore,

E
[
L(f̂n)− Ln(f̂n)

]
=

1

n

n∑

i=1

E
[
`(f̂n, Z

′
i)− `(f̂ (i)

n , Z ′i)
]

(13.9)

≤ 1

n

n∑

i=1

sup
z∈Z

∣∣∣`(f̂n, z)− `(f̂ (i)
n , z)

∣∣∣

≤ 2L2

mn
,

as claimed. Eq. (13.8) shows that the ERM algorithm generalizes well on average, i.e., the

empirical risk of f̂n = A(Zn) on the data Zn is a good estimate of L(f̂n) = L(A(Zn)) in
expectation.

Now let f ∗ ∈ F achieve L∗. Since f ∗ doesn’t depend on Zn, we have L∗ = L(f ∗) =

E[Ln(f ∗)] ≥ E[Ln(f̂n)], and therefore

E
[
L(f̂n)− L∗

]
≤ E

[
L(f̂n)− Ln(f̂n)

]
≤ 2L2

mn
.

From Markov’s inequality, it then follows that

L(f̂n)− L∗ ≤ 2L2

δmn
with probability at least 1− δ, and we are done. �

The following variation of Theorem 13.1 relaxes the strong convexity assumption on the
mapping f 7→ `(f, z) by switching to complexity-regularized ERM based on a penalty term.

Theorem 13.2. Let F be a convex and norm-bounded subset of a Hilbert space H, i.e.,
there exists some B < ∞, such that ‖f‖ ≤ B for all f ∈ F. Suppose also that, for each
z ∈ Z, the function f 7→ `(f, z) is convex and L-Lipschitz (note: we are not assuming strong
convexity). For each λ > 0, consider the complexity-regularized ERM algorithm

f̂n,λ = Aλ(Z
n) := arg min

f∈F

{
1

n

n∑

i=1

`(f, Zi) +
λ

2
‖f‖2

}
.

160

Then f̂n = f̂n,λ with λ = 2L
B
√
n

satisfies

L(f̂n) ≤ L∗ +
LB√
n

+
LB

δ
√
n

+
8LB

δn
(13.10)

with probability at least 1− δ.
Proof. The idea is to apply Theorem 13.1 for the loss function `λ(f, z) , `(f, z)+ λ

2
‖f‖2.

This function is λ-strongly convex. The function λ
2
‖f‖2 has gradient λf, and ‖λf‖ ≤ λB

for f ∈ F, so λ
2
‖f‖2 is λB Lipschitz over F, so for each z, `λ(f, z) is L + λB Lipschitz over

F. Therefore, Theorem 13.1 yields that with probability at least 1− δ,

Lλ(f̂n,λ) ≤ L∗λ +
2(L+ λB)2

δλn
,

where L∗λ is the minimum generalization regularized risk. Since λ
2
‖f‖2 ≤ λB2

2
for f ∈ F it

follows that L∗λ ≤ L∗+ λB2

2
. Also, L(f̂n,λ) ≤ Lλ(f̂n,λ) with probability one, and

(
1 + 2√

n

)2

≤
1 + 8√

n
. Combining these observations and the choice of λ yields (13.10). �

13.3. Learnability and stability

The ERM algorithm considered in the previous system is stable with respect to replace
one perturbations, in the sense of (13.7), due to the assumed strong convexity of the loss
functions. It was then shown that the stability property implies that the algorithm general-
izes well, in the sense of (13.8). The idea of this section is to focus on the fact that stability
of a learning algorithm with respect to replace one perturbations implies that the algorithm
generalizes well. That is, it does not overfit the data. We begin by revisting (13.9), with the
notation changed to indicate the role of the algorithm A.

E [L(A(Zn))]− E [Ln(A(Zn)] = E

[
1

n

n∑

i=1

`(A(Zn), Z ′i)− `(A(Zn
(i)), Z

′
i)

]
(13.11)

To recall why (13.11) is true, observe that on the righthand side, for each i, the first term in
the sum, `(A(Zn), Z ′i), is the loss for A on a fresh data sample and the term `(A(Zn

(i)), Z
′
i) is

the loss for A (trained on Zn
(i)) on the ith training sample used in the training data Zn

(i).
Next we state the definition of stability on average, and for convenience we restate the

definition of generalization on average:

Definition 13.1. An algorithm A is stable on average (with respect to replace-one op-
eration) if

sn(A) , sup
P

1

n

∣∣∣∣
n∑

i=1

E
[
`(A(Zn), Z ′i)− `(A(Zn

(i)), Z
′
i)
] ∣∣∣∣

n→∞−→ 0.(13.12)

An algorithm A generalizes on average if

gn(A) , sup
P

∣∣∣∣E [L(A(Zn))]− E [Ln(A(Zn)]

∣∣∣∣
n→∞−→ 0.

Lemma 13.1. For any learning algorithm, sn(A) = gn(A). In particular, A is stable on
average if and only if it generalizes on average.

161

Proof. Take the absolute value and supremum over P on each side of (13.11) to get
sn(A) = gn(A). �

Definition 13.2. An algorithm A is consistent if

cn(A) , sup
P

E [L(A(Zn))− L∗] n→∞−→ 0.(13.13)

In some applications it is too demanding to find an ERM algorithm, but algorithms
satisfying the weaker property in the following definition may be available.

Definition 13.3. An algorithm A is an asymptotic empirical risk minimizer (AERM)
if

en(A) , sup
P

E [Ln(A(Zn))− L∗n]
n→∞−→ 0,(13.14)

where L∗n is the (random) minimum empirical risk: L∗n = L∗n(F) = inff∈F Ln(f).

Remark 13.1. Note that in (13.13), the notation L is short for LP and L∗ is short
for L∗P . Since L(A(Zn)) − L∗ ≥ 0 for any Zn, any P , and any algorithm A, cn(A) =
supP E

[∣∣L(A(Zn))− L∗
∣∣] . Similarly, Ln(A(Zn))−L∗n ≥ 0 for any Zn and any algorithm A,

so en(A) = supP E
[∣∣Ln(A(Zn))− L∗n

∣∣] .
The following is perhaps the most useful result about the virtues of stability:

Theorem 13.3. For any algorithm A, cn(A) ≤ sn(A) + en(A). Therefore, an AERM
algorithm that is stable on average is consistent.

Proof. For any algorithm A and any probability distribution P , by the definitions of
gn(A) and en(A),

E [L(A(Zn))] ≤ E [Ln(A(Zn))] + gn(A)

≤ E [L∗n] + en(A) + gn(A)

≤ L∗ + en(A) + gn(A).

Together with the fact gn(A) = sn(A), this implies that cn(A) ≤ sn(A) + en(A) as claimed.
�

Theorem 13.3 implies that stability on average, or equivalently, generalization on average,
is sufficient for an ERM algorithm to be consistent. It turns out that an ERM algorithm
generalizes on average (see (13.4) for definition) if and only if it generalizes, as shown next.

Proposition 13.1. If A is an AERM algorithm that generalizes on average, then it
generalizes, and moreover

gn(A) ≤ ḡn(A) + 2en(A) +
2√
n
.(13.15)

Proof. We begin by decomposing the difference Ln(A(Zn))− L(A(Zn)):

Ln(A(Zn))− L(A(Zn))

= Ln(A(Zn))− L∗n + L∗n − Ln(f ∗)︸ ︷︷ ︸
≤0

+Ln(f ∗)− L(f ∗) + L(f ∗)− L(A(Zn))︸ ︷︷ ︸
≤0

≤ Ln(A(Zn))− L∗n + Ln(f ∗)− L(f ∗).

162

Applying Lemma 13.5 in the Appendix to U := Ln(A(Zn)) − L(A(Zn)) and V :=
Ln(A(Zn))− L∗n + Ln(f ∗)− L(f ∗), we get

E |Ln(A(Zn))− L(A(Zn))|
≤ |E[Ln(A(Zn))− L(A(Zn))]|+ 2E |L(A(Zn))− L∗n + Ln(f ∗)− L(f ∗)|
≤ |E[Ln(A(Zn))− L(A(Zn))]|+ 2E |L(A(Zn))− L∗n|+ 2E|Ln(f ∗)− L(f ∗)|

≤ ḡn(A) + 2en(A) +
2√
n
,

where in the last line we have used the assumed properties of A, together with the fact that,
for any f , E|Ln(f)− L(f)| = E|Ln(f)−ELn(f)| ≤

√
E(Ln(f)− ELn(f)2) ≤ 1√

n
, since ` is

bounded between 0 and 1. This completes the proof. �

13.4. Stability of stochastic gradient descent

One of the most popular algorithms for learning over complicated hypothesis classes (such
as deep neural networks) is the Stochastic Gradient Descent (SGD) algorithm. The basic
idea behind SGD is as follows. For a fixed training set Zn = (Z1, . . . , Zn), the usual ERM
approach requires minimizing the function

Ln(f) =
1

n

n∑

i=1

`(f, Zi)(13.16)

over the hypothesis class F. One way to go about this is to use gradient descent: assuming
that the function f 7→ `(f, z) is differentiable for each z ∈ Z, we can set the initial condition
f0 ∈ F and iteratively compute

ft = Π (ft−1 − αt∇Ln(ft−1)) , t = 1, 2, . . .(13.17)

where Π : H→ F is the projection operator onto F,

∇Ln(ft−1) =
1

n

n∑

i=1

∇`(ft−1, Zi)

is the gradient of Ln at ft−1, and {αt}∞t=1 is a monotonically decreasing sequence of positive
reals typically referred to as step sizes. Under certain mild conditions on ` and F, and with
appropriately tuned step sizes, one can guarantee that

Ln(ft)→ inf
f∈F

Ln(f) ≡ L∗n as t→∞.

In other words, for each n, we can find a large enough Tn, such that A(Zn) = fTn is an
AERM algorithm.

However, one disadvantage of gradient descent is that each update (13.17) requires a
sweep through the entire sample Zn in order to compute the gradient ∇Ln. Thus, the
complexity of each step of the gradient descent method scales as O(n). SGD offers a way
around this limitation and allows to reduce the complexity of each iteration to O(1). If
we look at (13.16), we see that the empirical loss Ln(f) can be written as an average of n
functions of f :

Ln(f) =
1

n

n∑

i=1

`i(f), where `i(f) := `(f, Zi).

163

In each iteration of SGD, we pick a random index It ∈ {1, . . . , n} and update

ft = Π (ft−1 − αt∇`It(ft−1)) ≡ Π (ft−1 − αt∇`(ft−1, ZIt)) .(13.18)

Thus, SGD is a randomized algorithm. We will assume from now on that (It, t = 1, 2, . . .) is a
random process with values in [n] that is statistically invariant with respect to permutations
of the values. That is, for any permutation π : [n] → [n], (It : t = 1, 2, . . .) has the same
distribution as (π ◦ It : t = 1, 2, . . .). For example, the selections It could be independent and
uniformly distributed over [n], or the sequence could be periodic with period n such that
I1, . . . , In is a random permutation of [n], or the blocks of the form Ikn+1. . . . , Ikn+n could be
independent permutations of [n] for all k ≥ 0.

In a recent paper, Hardt, Recht, and Singer [HRS16] have shown that SGD with suitably
tuned step sizes and number of updates gives a stable learning algorithm. Under different
assumptions on the loss function `, we end up with different conditions for stability. In
order to proceed, let us first examine the evolution of SGD updates for a fixed training set
Zn. Fix a differentiable function ϕ : F → R and a step size α ≥ 0, and define an operator
Gϕ,α : F → F by

Gϕ,α(f) := Π (f − α∇ϕ(f)) .(13.19)

Then we can write the tth update of SGD as

ft = Gt(ft−1), where Gt := G`(·,ZIt),αt .(13.20)

Now let us fix some i∗ ∈ {1, . . . , n} and consider running SGD with the same realization of
the random indices {It} on another training set Z ′n = (Z ′1, . . . , Z

′
n), where Z ′i∗ 6= Zi∗ and

Z ′j = Zj for all j 6= i∗. Denoting by {f ′t} the corresponding updates with f ′0 = f0, we can
write

f ′t = G′t(f
′
t−1), where G′t := G`(·,Z′It),αt

.(13.21)

For each t = 0, 1, . . ., let δt := ‖ft−f ′t‖, with the initial condition δ0 = 0. Define the following
quantities:

ηt := sup
f,f ′∈F

‖Gt(f)−Gt(f
′)‖

‖f − f ′‖(13.22)

and

ct := sup
f∈F

(‖Gt(f)− f‖ ∨ ‖G′t(f)− f‖) .(13.23)

We can now track the evolution of δt as follows:

• If It 6= i∗, then `(·, ZIt) = `(·, Z ′It), and therefore

δt = ‖ft − f ′t‖
= ‖Gt(ft−1)−G′t(f ′t−1)‖
= ‖Gt(ft−1)−Gt(f

′
t−1)‖

≤ ηt‖ft−1 − f ′t−1‖.
164

• If It = i∗, then

δt = ‖Gt(ft−1)−G′t(f ′t−1)‖
≤ ‖Gt(ft−1)−Gt(f

′
t−1)‖+ ‖Gt(f

′
t−1)−G′t(f ′t−1)‖

≤ ηt‖ft−1 − f ′t−1‖+ ‖Gt(f
′
t−1)− f ′t−1‖+ ‖G′t(f ′t−1)− f ′t−1‖

≤ ηt‖ft−1 − f ′t−1‖+ 2ct.

We can combine these two cases into a single inequality:

δt ≤ ηtδt−1 + 2ct1{It=i∗}.(13.24)

This will be our main tool for analyzing the stability of SGD.
We also need to use the contraction property of the gradient update map. As shown in

Proposition 4.2, projection onto a closed convex subset of a Hilbert space is nonexpansive.
Thus, if the gradient descent map of Lemma 3.4 is followed by projection onto a convex
subset of the Hilbert space as in this section, the contraction properties of Lemma 3.4 hold
with the projection included. Therefore, if αt ≤ 2

M
, then ηt ≤ 1 for all t, and, if in addition,

ϕ is m-strongly convex and αt ≤ 1
M

, then ηt ≤ 1− αtm
2
.

Now we can analyze the stability of SGD under various assumptions on the loss `.

Theorem 13.4. Suppose that, for all z ∈ Z, the function f 7→ `(f, z) is convex, M-
smooth, and L-Lipschitz. If SGD is run with αt ≤ 2

M
for T time steps, then, for any two

datasets Zn and Z ′n that differ only in one sample,

sup
z∈Z

E |`(fT , z)− `(f ′T , z)| ≤
2L2

n

T∑

t=1

αt,(13.25)

where the expectation is only with respect to the internal randomness of SGD, i.e., the selec-
tion process (It).

Proof. Let i∗ ∈ [n] be the coordinate where Zn and Z ′n differ. By the contraction
property of the gradient descent map discussed above (i.e. ηt ≤ 1) and the assumption that
ϕ is L-Lipschitz,

‖Gϕ,α(f)− f‖ = ‖Π(f − α∇ϕ(f))− Π(f)‖
≤ α‖∇ϕ(f)‖
≤ αL,

so ct ≤ αtL for all t. Using these two estimates in (13.24) gives

δt ≤ δt−1 + 2αtL1{It=i∗}.(13.26)

By the symmetry assumption on (It), P[It = i∗] = 1
n

for all i∗ and all t. Therefore, taking
expectations of both sides of (13.26) with respect to (It), we get

E[δt] ≤ E[δt−1] +
2αtL

n
.

Since δ0 = 0, we obtain

E[δT] ≤ 2L

n

T∑

t=1

αt.(13.27)

165

Finally, using the Lipschitz continuity of `, we get for any z ∈ Z

E|`(fT , z)− `(f ′T , z)| ≤ L · E[δT](13.28)

≤ 2L2

n

T∑

t=1

αt.(13.29)

Since z was arbitrary, we have (13.25). �

For example, if we set T = n and αt = 2
M
√
n

for all t, then

n∑

t=1

αt =
2
√
n

M
,(13.30)

and then the algorithm A(Zn) obtained by running SGD for n steps with constant step size

α = 2/M
√
n is stable with s̄n(A) ≤ 4L2

M
√
n
.

If we now assume that ` is also strongly convex, we get a bound that does not depend
on the number of iterations T :

Theorem 13.5. Suppose that ` satisfies the conditions of Theorem 13.4, and also that
the function f 7→ `(f, z) is m-strongly convex for each z ∈ Z. Suppose that we run SGD with
a constant step size α ≤ 1

M
for T time steps. Then, for any two datasets Zn and Z ′n that

differ in only one sample,

sup
z∈Z

E|`(fT , z)− `(f ′T , z)| ≤
4L2

mn
,(13.31)

where the expectation is only with respect to the internal randomness of SGD (i.e., index
selection).

Proof. The proof is similar to the proof of Theorem 13.4. First of all, under our
assumptions on ` and on α, by the contraction property of the gradient descent map and
the Lipschitz assumptions,

ηt ≤ 1− αm

2
and ct ≤ αL.(13.32)

Using this in (13.24), we have

δt ≤
(

1− αm

2

)
δt−1 + 2αL · 1{It=i∗}.(13.33)

Taking expectations of both sides with respect to (It) yields

E[δt] ≤
(

1− αm

2

)
E[δt−1] +

2αL

n
,(13.34)

with the initial condition δ0 = 0. Unwinding the recursion, we get

E[δT] ≤ 2αL

n

T∑

t=1

(
1− αm

2

)t−1

≤ 2αL

n
· 2

αm
=

4L

mn
.(13.35)

The result follows. �

Finally, we derive a stability estimate for SGD without requiring convexity, but still
assuming Lipschitz-continuity and smoothness:

166

Theorem 13.6. Suppose that, for each z ∈ Z, the loss function f 7→ `(f, z) is M-smooth,

L-Lipschitz, and bounded between 0 and 1. Suppose that we run SGD with It
i.i.d.∼ Uniform([n])

and step sizes αt ≤ c/t for T time steps, where c > 0 is some constant. Then, for any two
datasets Zn and Z ′n that differ in only one sample,

sup
z∈Z

E|`(fT , z)− `(f ′T , z)| ≤
1 + 1/Mc

n
(2cL2)

1
Mc+1T

Mc
Mc+1 ,(13.36)

where the expectation is only with respect to the internal randomness of SGD (i.e., index
selection).

Remark 13.2. The assumption that It are i.i.d. is necessary here.

Proof. If ϕ is L-Lipschitz continuous and M -smooth, then for any f, f ′ and α > 0,

‖Gϕ,α(f)−Gϕ,α(f ′)‖ = ‖f − f ′ − α(∇ϕ(f)−∇ϕ(f ′))‖
≤ ‖f − f ′‖+ α‖∇ϕ(f)−∇ϕ(f ′)‖ ≤ (1 + αM)‖f − f ′‖.

Therefore, ηt ≤ 1 +αtM ≤ 1 + Mc
t

for all t. The Lipschitz assumption and choice of αt gives

ct ≤ cL
t
. Taking expectations on each side of (13.24) yields

E[δt] ≤
(

1 +
cM

t

)
E[δt−1] +

2Lc

nt
.(13.37)

Using only (13.37) and the initial condition δ0 = 0 does not give a good bound on E[δT]
because of the large step sizes for small t. To proceed, let t0 ∈ {0, . . . , n}. We know δt0 6= 0
only if sample i∗ is used by time t0 (i.e. only if It = i∗ for some t with 1 ≤ t ≤ t0). So,

since independent uniform sampling is assumed, P[δt0 = 0] ≥
(
1− 1

n

)t0 ≥ 1− t0
n
. Using the

the fact |`T (fT)− `T (f ′T)| ≤ LδT on the event δt0 = 0 and the fact |`T (fT)− `T (f ′T)| ≤ 1 in
general,

E|`T (fT)− `T (f ′T)| ≤ L∆T +
t0
n
,(13.38)

where ∆t := E[δt|δt0 = 0] for t ≥ t0. The same reasoning that led to (13.37) yields

∆t ≤
(

1 +
cM

t

)
∆t−1 +

2Lc

nt

≤ exp

(
Mc

t

)
∆t−1 +

2Lc

nt
for t ≥ t0(13.39)

167

where in the last line we have used the inequality 1 + u ≤ exp(u). Unwinding the recursion
down to t = t0 + 1 and using the initial condition ∆t0 = 0, we have

∆T ≤
T∑

t=t0+1

T∏

k=t+1

exp(Mc/k)
2cL

tn

=
T∑

t=t0+1

exp

(
Mc

T∑

k=t+1

1

k

)
2cL

tn

≤
T∑

t=t0+1

exp

(
Mc log

T

t

)
2cL

tn

≤ 2cL

n
TMc

T∑

t=t0+1

t−(1+Mc)

≤ 2cL

n
TMc 1

Mc

(
t−Mc
0 − T−Mc

)

≤ 2L

nM

(
T

t0

)Mc

.

Plugging this estimate into (13.38), we get

E [|`(fT , z)− `(f ′T , z)|] ≤
t0
n

+
2L2

nM

(
T

t0

)Mc

.

The right-hand side is (approximately) minimized by setting

t0 =
(
2cL2

) 1
q+1 T

q
q+1 , q = Mc

which gives

E [|`(fT , z)− `(f ′T , z)|] ≤
1 + 1/Mc

n
(2cL2)

1
Mc+1T

Mc
Mc+1 .

�

In this case, we can set T = n(1−ε)(Mc+1)/Mc for any ε ∈ (0, 1), and obtain the stability
bound

sn(A) ≤ (1 + 1/Mc)(2cL2)
1

Mc+1n−ε(13.40)

for A(Zn) = fT .

13.5. Analysis of Stochastic Gradient Descent

This section summarizes an analysis of stochastic gradient descent following [BCN16].
Convergence results are presented first under smoothness and strong convexity assumptions,
and under mild assumptions on the stochastic gradient. Then the convexity assumption is
dropped, allowing for the possibility of convergence to a local minimum, but it is shown that
the mean square gradient still converges to zero in an average sense.

The setting is the following.

• F is a Hilbert space, possibly a finite dimensional Euclidian space Rd

168

• Γ : F → R is continuously differentiable, with a finite infimum Γ∗

• f1 ∈ F (Initial state)
• (ξt : t = 1, 2, . . .) is a sequence of mutually independent random variables
• g(ft, ξt) is a random element of the Hilbert space for each t. It is a stochastic gradient

of Γ evaluated at ft.

The stochastic gradient descent (SGD) algorithm is given by the update

ft+1 = ft − αtg(ft, ξt)

such that (αt : t = 1, 2, . . .) is a sequence of nonnegative stepsizes.

Example 13.1. The function Γ could have the form of an empirical risk: Γ(f) =
1
n

∑n
i=1 `(f, zi) for some deterministic data sequence zn (perhaps coming by sampling n times

from some distribution) and ` is a loss function. The random variables (ξt) could be inde-
pendent, and each uniformly distributed over [n] and g(·, ξt) = ∇`(·, zξt). More generally, the

random variables could be independent and each uniformly distributed over
(

[n]
k

)
, the set of

subsets of [n] of cardinality k (k is the batch size), and

g(·, ξt) =
1

|ξt|
∑

j∈ξt

∇`(·, zj).

Assumption 13.1. (i) There exists µ > 0 such that for all t ≥ 1,

〈∇Γ(ft),Eξt [g(ft, ξt)]〉 ≥ µ‖∇Γ(ft)‖2.(13.41)

(ii) There exist B ≥ 0 and BG ≥ 0 such that

Eξt [‖g(ft, ξt)‖2] ≤ B +BG‖∇Γ(ft)‖2.(13.42)

The assumption (13.41) would be satisfied with µ = 1 if, given ft, the stochastic gradient
is an unbiased estimator of the actual gradient of Γ: Eξt [g(ft, ξt)] = ∇Γ(ft). If B > 0, the
stochastic gradient can continue to exhibit variance bounded away from zero, even as the
actual gradient becomes arbitrarily small. It can be shown that if ‖∇Γ(ft)‖ can be arbitrarily
large, then (13.41) and (13.42) imply that BG ≥ µ2. Also, if B = 0 and µ = BG = 1, the
SGD algorithm must be the deterministic gradient descent algorithm with stepsizes (αt).

Theorem 13.7. (SGD with fixed stepsize for smooth, strongly convex objective function)
Suppose Γ is M-smooth and m-strongly convex for some M,m > 0, and suppose Assumption
13.1 holds. Consider SGD run with fixed stepsize α such that 0 < α ≤ µ

MBG
. Then the

optimality gap satisfies

EΓ(ft)− Γ∗ ≤ αMB

2mµ
+ (1− αmµ)t−1

(
Γ(f1)− Γ∗ −

αMB

2mµ

)
(13.43)

t→∞−→ αMB

2mµ

Proof. By the M smoothness assumption,

Γ(ft+1)− Γ(ft) ≤ 〈∇Γ(ft), ft+1 − ft〉+
M

2
‖ft+1 − ft‖2

= −α〈∇Γ(ft), g(ft, ξt)〉+
α2M

2
‖g(ft, ξt)‖2

169

Taking expectation with respect to the randomness of ξt, invoking Assumption 13.1, and
using the assumption 0 < α ≤ µ

MBG
yields

Eξt [Γ(ft+1)]− Γ(ft) ≤ −µα‖∇Γ(ft)‖2 +
α2M

2

(
B +BG‖∇Γ(ft)‖2

)

= −α
(
µ− αMBG

2

)
‖∇Γ(ft)‖2 +

α2MB

2
(13.44)

≤ −αµ
2
‖∇Γ(ft)‖2 +

α2MB

2
.(13.45)

The bound (13.45) shows how smoothness can be translated into a bound on descent to be
expected in terms of the norm of the gradient at ft. The next step is to use strong convexity,
which implies that the norm of the gradient is lower bounded by Γ(ft)−Γ(f ∗).) The m-strong
convexity of Γ implies (see Lemma 3.2(5)) :

Γ(ft)− Γ∗ ≤ ‖∇Γ(ft)‖2

2m

which, when substituted into (13.45), yields

Eξt [Γ(ft+1)]− Γ(ft) ≤ −αmµ(Γ(ft)− Γ∗) +
α2MB

2

Subtracting Γ∗ from both sides, taking total expectations, and rearranging, yields

EΓ(ft+1)− Γ∗ ≤ (1− αmµ) (EΓ(ft)− Γ∗) +
α2MB

2
,

from which (13.43) follows by induction on t. �

The bound (13.43) on the expected optimality gap does not converge to zero as t → ∞
because even near a minimizer the gradient is permitted to be noisy if B > 0. If diminishing
stepsizes are used then essentially the law of large numbers helps out to make the expected
optimality gap converge to zero. The classical schedule of Robbins and Monroe is to select
(αt) so that

∞∑

t=1

αt =∞ and
∞∑

t=1

α2
t ≤ ∞.(13.46)

The first condition in (13.46) is needed to ensure that the sequence ft can move arbitrarily
far, within regions where the gradient is bounded. The second condition is equivalent to∑∞

t=T α
2
t → 0 as T → ∞, so that for very large T , the total variance of noise in the future

of the stochastic gradient is converging to zero.

Theorem 13.8. (SGD with diminishing stepsize for smooth, strongly convex objective
function) Suppose Γ is M-smooth and m-strongly convex for some M,m > 0. Suppose As-
sumption 13.1 holds. Consider SGD run with stepsizes αt = c

γ+t
such that c > 1

mµ
and γ is

large enough that α1 ≤ µ
MBG

. Then for all t ≥ 1 the optimality gap satisfies

EΓ(ft)− Γ∗ ≤ ν

γ + t
(13.47)

170

where

ν , max

{
c2MB

2(cmµ− 1)
, (γ + 1)(Γ(f1)− Γ∗).

}
(13.48)

Proof. Note that αt ≤ µ
MBG

for all t ≥ 1, so the proof of Theorem 13.7 goes through
with α replaced by αt to yield

EΓ(ft+1)− Γ∗ ≤ (1− αtmµ) (EΓ(ft)− Γ∗) +
α2
tMB

2
,

=

(
1− cmµ

γ + t

)
(EΓ(ft)− Γ∗) +

c2MB

2(γ + t)2

≤
(

1− cmµ

γ + t

)
(EΓ(ft)− Γ∗) +

ν(cmµ− 1)

(γ + t)2
,(13.49)

where the last step uses the fact c2MB
2
≤ ν(cmµ− 1). Finally, (13.47) holds for t = 1 by the

choice of ν, and it follows for all t ≥ 1 from (13.49) by induction on t. �

SGD without convexity. The following drops the assumption that the objective function
is convex. The objective function is still assumed to be bounded below (i.e. have a finite
infimum, Γ∗.) The proof follows the first half of the proof of Theorem 13.7, which uses
the smoothness assumption. With the convexity assumption dropped, the algorithm could
become stuck near a local minimum. If it is near a local minimum for a long time, its step
sizes will get small because the gradient will be small. After that it might escape to a new
local minimum and for a time have larger gradients. Since Γ is assumed to be bounded
below, however, the algorithm can’t forever experience large gradients on average.

Theorem 13.9. (SGD with fixed stepsize for smooth objective function) Suppose Γ is
M-smooth for some M > 0, and suppose Assumption 13.1 holds. Consider SGD run with
fixed stepsize α such that 0 < α ≤ µ

MBG
. Then the expected average-squared-gradients of Γ

corresponding to the SG iterates satisfies the following inequality for all T ≥ 1.

E
1

T

T∑

t=1

‖∇Γ(ft)‖2 ≤ αMB

µ
+

2(Γ(f1)− Γ(f ∗))

Tµα
(13.50)

T→∞−→ αMB

µ
.(13.51)

Proof. Taking the total expectation of each side of (13.45) yields

EΓ(ft+1)− EΓ(ft) ≤ −
αµ

2
E‖∇Γ(ft)‖2 +

α2MB

2
.(13.52)

Summing each side of (13.52) over 1 ≤ t ≤ T , using the fact Γ(fT+1) ≥ Γ∗, and dividing by
T yields (13.50). �

Here is a variation with decreasing step sizes.

Theorem 13.10. (SGD with diminishing stepsize for smooth objective function) Suppose
Γ is M-smooth for some M > 0, and suppose Assumption 13.1 holds. Consider SGD run

171

with stepsizes αt ≥ 0 such that AT ,
∑T

t=1 αt
T→∞−→ ∞, ∑∞t=1 α

2
t <∞, and αt ≤ µ

MBG
for all

t. Then

E
∞∑

t=1

αt‖∇Γ(ft)‖2 <∞

and therefore

1

AT
E

T∑

t=1

αt‖∇Γ(ft)‖2 T→∞−→ 0.(13.53)

Proof. By the assumptions, (13.52) holds for each t with α replaced by αt. The sum of
the left side of (13.52) over 1 ≤ t ≤ T − 1 is EΓ(fT)− EΓ(ft) ≥ Γ∗ − Γ(f1). Thus,

E
∞∑

t=1

αt‖∇Γ(ft)‖2 ≤ 2(Γ(f1)− Γ∗)

µ
+
MB

µ

∞∑

t=1

α2
t <∞.

�

The condition (13.53) shows that the expected squared gradients converge to zero in a
certain average sense.

13.6. Differentially private algorithms and generalization

Recall that we have defined a randomized learning algorithm A to be stable if the outputs
A(Zn) and A(Z ′n) of A on two training sets Zn and Z ′n that differ in only one example are
close in terms of their losses: for example, A is ε-uniformly stable if

sup
z∈Z

[E`(A(Zn), z)− E`(A(Z ′n), z)] ≤ ε(13.54)

for all Zn and Z ′n that differ in only one example.
In this section, we will examine a much stronger stability property that pertains to the

sensitivity of the conditional distribution of the output of A given Zn = zn to individual
training examples comprising Zn. For this purpose, it is convenient to think of F = A(Zn)
as a random object taking values in the hypothesis class F. Then the operation of A is
fully described by the conditional distribution PF |Zn . Moreover, we can rewrite the stability
condition (13.54) in the following equivalent form:

sup
z∈Z

[E[`(F, z)|Zn = zn]− E[`(F, z)|Zn = z′n]] ≤ ε(13.55)

for any two training sets zn, z′n that differ in at most one example. Let us now consider a
stronger property that compares the conditional distribution of F given Zn = zn against the
one given Zn = z′n:

Definition 13.4. A randomized algorithm A specified by the conditional distribution
PF |Zn is (ε, δ)-differentially private if, for any measurable subset B of F and for any two
trainig sets zn, z′n that differ in at most one example, we have

P
[
F ∈ B

∣∣Zn = zn
]
≤ eεP

[
F ∈ B

∣∣Zn = z′n
]

+ δ.(13.56)

Equivalently, PF |Zn is (ε, δ)-differentially private if, for any function g : F → [0, 1],

E[g(F)|Zn = zn] ≤ eεE[g(F)|Zn = z′n] + δ.(13.57)

172

This definition was proposed by Cynthia Dwork in the context of protecting individual
information in statistical databases [Dwo06]. Of course, it is useful only for δ ∈ [0, 1) and
for suitably small values of ε.

We start with the following simple observation:

Lemma 13.2. If a learning algorithm PF |Zn is (ε, δ)-differentially private, then it is (eε−
1 + δ)-uniformly stable in the sense of (13.54). If ε ∈ [0, 1], then the algorithm is (2ε + δ)-
uniformly stable.

Proof. A direct consequence of the definition: let zn, z′n be two training sets differing
in only one example. Then, for any z ∈ Z,

E[`(F, z)|Zn = zn]− E[`(F, z)|Zn = z′n] ≤ (eε − 1)E[`(F, z)|Zn = z′n] + δ

≤ eε − 1 + δ.

Since eu − 1 ≤ 2u for u ∈ [0, 1], we also obtain the second part of the lemma. �

This stability estimate immediately implies that a differentially private algorithm should
generalize. However, the resulting bounds are rather loose. We will now present a tighter
bound, due to Nissim and Stemmer [NS15].

First, we need to collect some preliminaries on the properties of differentially private
algorithms. Fix a randomized algorithm A = PF |Zn and consider a new algorithm obtained
by running M copies of A in parallel on m training sets (Zj,1, . . . , Zj,n), 1 ≤ j ≤ m. In other
words, we form the matrix

Zm×n =

Z1,1 Z1,2 . . . Z1,n

Z2,1 Z2,2 . . . Z2,n
...

...
. . .

...
Zm,1 Zm,2 . . . Zm,n

and let Fj be the output of A on the jth row of Zm×n. This defines a new algorithm, which
we denote by Am and which is described by the following conditional distribution PFm|Zm×n :
For any m measurable sets B1, . . . , Bm ⊂ F,

P
[
F1 ∈ B1, . . . , Fm ∈ Bn

∣∣Zm×n = zm×n
]

=
m∏

j=1

P
[
F ∈ Bm

∣∣Zn = (zj,1, . . . , zj,n)
]
.

If A is (ε, δ)-differentially private, then the algorithm Am constructed in this way is also (ε, δ)-
differentially private. This follows almost immediately from the fact that the jth component
of the output of the new algorithm depends only on the jth row of the matrix Zm×n.

Another way of combining algorithms is by adaptive composition. Consider two random-
ized algorithms, A1 = PF1|Zn and A2 = PF2|Zn,F1 . Here, the first algorithm takes a dataset Zn

and produces an output F1 ∈ F1; the second algorithm takes a dataset Zn and an additional
F1-valued input F1 and produces an output F2 ∈ F2. The adaptive composition of A1 and
A2 takes Zn as input and produces an output F2 ∈ F2 using a two-stage procedure:

• Generate F1 by running A1 on Zn.
• Generate F2 by running A2 on Zn and on F1 generated by A1.

Suppose that A1 is (ε1, δ1)-differentially private, and that, for each f1 ∈ F1, PF2|Zn,F1=f1 is
(ε2, δ2)-differentially private. Then their adaptive composition is (ε1+ε2, δ1+δ2)-differentially

173

private. We will now prove this: Fix an arbitrary function g : F2 → [0, 1] and two datasets
zn, z′n that differ in only one sample, and write
∫

F2

g(f2)PF1,F2|Zn=zn(df1, df2) =

∫

F1

(∫

F2

g(f2)PF2|Zn=zn,F1=f1(df2)

)
PF1|Zn=zn(df1)

≤
∫

F1

min

(
1, eε2

∫

F2

g(f2)PF2|Zn=z′n,F1=f1(df2) + δ2

)
PF1|Zn=zn(df1)

=

∫

F1

min

(
1, eε1

∫

F2

g(f2)PF2|Zn=z′n,F1=f1(df2)

)
PF1|Zn=zn(df1) + δ2,(13.58)

where we have used the differential privacy assumption on A2. Now, for a fixed realization
z′n, we can define the function

g′(f1) := min

(
1, eε2

∫

F2

g(f2)PF2|Zn=z′n,F1=f1(df2)

)

that takes values in [0, 1]. Therefore, by the differential privacy assumption on A1,
∫

F1

min

(
1, eε2

∫

F2

g(f2)PF2|Zn=z′n,F1=f1(df2)

)
PF1|Zn=zn(df1)

=

∫

F1

g′(f1)PF1|Zn=zn(df1)

≤ eε1
∫

F1

g′(f1)PF1|Zn=z′n(df1) + δ1

≤ eε1+ε2

∫

F1

∫

F2

g(f2)PF1,F2|Zn=z′n(df1, df2) + δ1.(13.59)

Using the bound (13.59) in (13.58), we obtain

E[g(F2)|Zn = zn] ≤ eε1+ε2E[g(F2)|Zn = z′n] + (δ1 + δ2).

Since g was arbitrary, we have established the desired differential privacy property.
Finally, we will need a particular differentially private algorithm, the so-called exponential

mechanism of McSherry and Talwar [MT07]. Suppose that we are given a function U :
S× Zn → R, where S is a finite set, such that

max
s∈S
|U(s, zn)− U(s, z′n)| ≤ 1

for all zn, z′n that differ in only one sample. Consider a randomized algorithm that takes
input Zn and generates an output S taking values in S according to the following distribution:

PS|Zn=zn(s) =
eεU(s,zn)/2

∑
s′∈S e

εU(s′,zn)/2
.(13.60)

We have the following:

Lemma 13.3. The exponential algorithm (13.60) has the following properties:

(1) It is ε-differentially private.
(2) Let U∗(zn) := maxs∈S U(s, zn). Then, for any t,

P
[
U(S,Zn) < U∗(Zn)− t

∣∣Zn = zn
]
≤ |S|e−εt/4.(13.61)

174

Proof. For part 1, fix zn, z′n differing in only one sample. Then we have

P [S = s|Zn = zn]

P [S = s|Zn = z′n]
=
eεU(s,zn)/2

eεU(s,z′n)/2
·
∑

s′∈S e
εU(s′,z′n)/2

∑
s′∈S e

εU(s′,zn)/2

= exp

(
ε(U(s, zn)− U(s, z′n))

2

)
·
∑

s′∈S e
εU(s′,z′n)/2

∑
s′∈S e

εU(s′,zn)/2

≤ eε/2 · |S|e
(ε/2) maxs∈S U(s,zn)

|S|e(ε/2) minc∈S U(s,z′n)

≤ eε/2 · exp

(
ε

2
·max
s∈S
|U(s, zn)− U(s, z′n)|

)

≤ eε.

For part 2: for each t, define the set

St := {s ∈ S : U(s, zn) ≥ U∗(zn)− t} .

Then

P
[
S ∈ St

∣∣Zn = zn
]

=

∑
s∈St e

εU(s,zn)/2

∑
s∈S e

εU(s,zn)/2

=

∑
s∈St e

εU(s,zn)/2

∑
s∈St/2 e

εU(s,zn)/2 +
∑

s∈Sc
t/2
eεU(s,zn)/2

≤
∑

s∈St e
εU(s,zn)/2

∑
s∈Sc

t/2
eεU(s,zn)/2

≤ e(ε/2)(U∗(zn)−t)e−(ε/2)(U∗(zn)−t/2)|St|
≤ |S|e−εt/4.

�

Finally, we need the following result, due to Nissim and Stemmer [NS15]:

Lemma 13.4. Let the parameters ε, δ be such that 0 < δ ≤ ε ≤ 1
5

and m = ε
δ

is an
integer. Consider an algorithm B that takes an input Zm×n and outputs a pair (FJ , J) ∈
F × {1, . . . ,m}. If B is (ε, δ)-differentially private, then

P
[
L(J)
n (FJ) ≤ L(FJ) + 5ε

]
≥ ε.(13.62)

Here, for each j ∈ {1, . . . ,m}, L(j)
n (f) denotes the empirical loss of f ∈ F on the jth row of

the matrix Zm×n.

Proof. We first derive a version of this result that holds in expectation. Let Z ′m×n be
an independent copy of Zm×n, and let Zm×n

(ji) be obtained from Zm×n by replacing the sample

Zji in the jth row and the ith column with Z ′ji.

175

Now, we write

E
[
L(J)
n (FJ)

]
=

m∑

j=1

E
[
L(J)
n (FJ)1{J = j}

]

=
1

n

∑

j=1

n∑

i=1

E[`(FJ , Zji)1{J = j}]

=
1

n

∑

j=1

n∑

i=1

∫
PZm×n(dzm×n)

∫
PZ′m×n(dz′m×n)

∫
P(FJ ,J)|Zm×n=zm×n(dfj, j)`(fj, zji)

=
1

n

∑

j=1

n∑

i=1

∫
PZm×n(dzm×n)

∫
PZ′m×n(dz′m×n)

∫
P(FJ ,J)|Zm×n=zm×nji

(dfj, j)`(fj, z
′
ji),

(13.63)

where in the last line we have used the assumption that the entries of Zm×n and Z ′m×n are
i.i.d. draws from the same distribution. Since P(FJ ,J)|Zm×n is (ε, δ)-differentially private, we
have

∫
P(FJ ,J)|Zm×n=zm×nji

(dfj, j)`(fj, z
′
ji) ≤ eε

∫
P(FJ ,J)|Zm×n=zm×n(dfj, j)`(fj, z

′
ji) + δ.

Averaging with respect to Zm×n and Z ′m×n and exploiting independence, we obtain
∫
PZm×n(dzm×n)

∫
PZ′m×n(dz′m×n)

∫
P(FJ ,J)|Zm×n=zm×nji

(dfj, j)`(fj, z
′
ji)

≤ eε
∫
PZm×n(dzm×n)

∫
PZ′m×n(dz′m×n)

∫
P(FJ ,J)|Zm×n=zm×nji

(dfj, j)`(fj, z
′
ji) + δ

= eεE[`(FJ , Z
′
ji)1{J = j}] + δ

= eεE[L(FJ)1{J = j}] + δ.

Substituting this into (13.63), we obtain

E
[
L(J)
n (FJ)

]
≤ eεE[L(FJ)] +mδ ≤ E[L(FJ)] + 2ε+mδ ≤ E[L(FJ)] + 3ε,(13.64)

where the second step follows from the inequality aex ≤ 2x + a for a, x ∈ [0, 1]. The
probability bound (13.62) follows from Lemma 13.6 in the Appendix. �

Now we are ready to state and prove the main result of this section:

Theorem 13.11 (Nissim–Stemmer). Let the parameters ε, δ be such that 0 < δ ≤ ε ≤ 1
10

and m = ε
δ

is an integer. Let A = PF |Zn be an (ε, δ)-differentially private randomized learning

algorithm operaitng on a sample of size n ≥ 4
ε2

log 8
δ
. Assume that ε ≥ δ. Then, for any loss

function ` : F × Z→ [0, 1],

P [|Ln(F)− L(F)| > 13ε] ≤ 2δ

ε
log

2

ε
.(13.65)

176

13.6.1. The proof of Theorem 13.11. Suppose, to the contrary, that A does not
generalize, i.e., that

P [Ln(F)− L(F) > 13ε] >
δ

ε
log

2

ε
.(13.66)

Draw m+ 1 independent datasets (Zj,1, . . . , Zj,n), j ∈ {1, . . . ,m+ 1}, from PZ , and form the
(m+ 1)× n matrix

Z(m+1)×n ==

Z1,1 Z1,2 . . . Z1,n

Z2,1 Z2,2 . . . Z2,n
...

...
. . .

...
Zm,1 Zm,2 . . . Zm,n
Zm+1,1 Zm+1,2 . . . Zm+1,n

.

Think of the first m rows of this matrix as m independent training sets, and of the last row
as a separate validation set. For j ∈ {1, . . . ,m}, let Fj ∈ F be the output of an independent
copy of A on the jth row of this matrix. Next, for each f ∈ F, define the empirical losses

L(j)
n (f) :=

1

n

n∑

i=1

`(f, Zj,i), j ∈ {1, . . . ,m+ 1}

of f on the jth training set and on the validation set. For the random set S = {(Fj, j)}mj=1,

define a function U : S× Z(m+1)×n → R by

U((Fj, j), z
(m+1)×n) := n

(
L(j)
n (Fj)− L(m+1)

n (Fj)
)

(13.67)

and generate a random pair (FI , I) ∈ S by running the McSherry–Talwar exponential algo-
rithm (13.60) with this function U on Z(m+1)×n.

For j ∈ {1, . . . ,m}, denote by Ej the event {L(j)
n (Fj) − L(Fj) > 13ε}, and let E =⋃m

j=1Ej. By hypothesis, cf. Eq. (13.66), P[Ej] >
δ
ε

log 2
ε

for each j. Since the events
E1, . . . , Em are independent,

P[Ec] = P

[
m⋂

j=1

Ec
j

]
=

m∏

j=1

P[Ec
j] ≤

(
1− δ

ε
log

2

ε

)m
=

(
1− δ

ε
log

2

ε

)ε/δ
≤ ε

2
.

Next, for each j ∈ {1, . . . ,m}, let Gj denote the event that |L(m+1)
n (Fj) − L(Fj)| ≤ ε, and

let G =
⋂m
j=1Gj. On the other hand, since F1, . . . , Fm are independent of the last row of the

matrix Z(m+1)×n, Hoeffding’s lemma and the union bound guarantee that

P [G] ≥ 1− 2me−2nε2 = 1− 2ε

δ
e−2nε2 .

By the union bound,

P[E ∩G] = 1−P[Ec ∪Gc] ≥ 1− (P[Ec] + P[Gc])

≥ 1− 2ε

δ
e−2nε2 − ε

2
.

Consequently, if we choose n ≥ 1
2ε2

log 8
δ
, then we will have P[E ∩G] ≥ 1− 3ε

4
.

177

Now, on the event E ∩G, the function U defined in (13.67) will satisfy

U∗(Z(m+1)×n) = max
j∈{1,...,m}

U(j, Z(m+1)×n)

= n max
j∈{1,...,m}

[
L(j)
n (Fj)− L(m+1)

n (Fj)
]

= n max
j∈{1,...,m}

[(
L(j)
n (Fj)− L(Fj)

)
+
(
L(Fj)− L(m+1)

n (Fj)
)]

≥ 12nε.

Therefore, on the event E ∩G, with probability at least 1−me−nε2/4, the output (FI , I) the
exponential mechanism with (13.67) will be such that

L(I)
n (FI)− L(FI) = L(I)

n (FI)− L(m+1)
n (FI) + L(m+1)

n (FI)− L(FI)

=
U(I, Z(m+1)×n)

n
+ L(m+1)

n (FI)− L(FI)

≥ U∗(Z(m+1)×n)

n
− 2ε > 10ε.

Thus, if n is also chosen to be larger then 4
ε2

log 8
δ
, then the output (FI , I) will satisfy

P
[
L(I)
n (FI) ≤ L(FI) + 10ε

]
≤ ε.(13.68)

By Lemma 13.4, this is impossible if we can show that the algorithm B = P(FJ ,J)|Z(m+1)×n is
(2ε, δ)-differentially private.

To see this, we observe that the algorithm B = P(FJ ,J)|Z(m+1)×n is an adaptive composition
of Am and the McSherry–Talwar algorithm. Since A is (ε, δ)-differentially private, so is Am,
and the McSherry–Talwar algorithm is (ε, 0)-differentially private. Therefore, B is (2ε, δ)-
differentially private. Therefore, by Lemma 13.4, its output must satisfy

P
[
L(J)
n (FJ) ≤ L(FJ) + 10ε

]
≥ 2ε.

which contradicts (13.68).

13.7. Technical lemmas

Lemma 13.5. Let U and V be two random variables, such that U ≤ V almost surely.
Then

E|U | ≤ |EU |+ 2E|V |.(13.69)

Proof. We have

E|U | = E|(V − U)− V | ≤ E|V − U |+ E|V | = E[V − U] + E|V | ≤ |EU |+ 2E|V |.
�

Lemma 13.6. Let U and V be two random variables, such that 0 ≤ U, V ≤ 1 almost
surely, and

E[U] ≤ E[V] + 3ε

for some 0 ≤ ε ≤ 1
5
. Then

P[U ≤ V + 5ε] ≥ ε.(13.70)

178

Proof. Suppose, by way of contradiction, that P[U ≤ V + 5ε] < ε. Then

E[U] = E[U1{U − V ≤ 5ε}] + E[U1{U − V > 5ε}]
> E[(5ε+ V)1{U − V > 5ε}]
= (5ε) P[U − V > 5ε] + E[V 1{U − V > 5ε}].

On the other hand, since 0 ≤ V ≤ 1

E[V 1{U − V ≤ 5ε}] ≤ E[1{U − V ≤ 5ε}] = P[U − V ≤ 5ε] < ε.

Therefore,

E[U] > (5ε) P[U − V > 5ε] + E[V]− ε
> (5ε)(1− ε) + E[V]− ε
= E[V] + 4ε− 5ε2

≥ E[V] + 3ε,

which contradicts the assumption that E[U] ≤ E[V] + 3ε. �

179

CHAPTER 14

Online optimization algorithms

The main topic for this chapter is online algorithms for convex optimization. In the
models for statistical learning problems discussed earlier, it is assumed the data Zn are
generated by independent draws from a probability distribution P on Z. The probability
distribution P is unknown, and for a problem to be PAC learnable, there should be an
algorithm that is probably almost correct, where the probability of almost correctness, 1− δ,
should converge to one uniformly over all P in some class P. Thus, the definition of PAC
has some min-max aspect.

We can buy into the minimax modeling philosophy more fully by dropping the assumption
that the samples are drawn at random from some distribution P. Rather, we could consider
the samples z1, z2, . . . to be arbitrary. The learner can be viewed as a player, and the
variables z1, z2, . . . can be viewed as chosen by an adversary. Usually in this context we
won’t be modeling the adversary, but just assume the adversary could come up with an
arbitrary sequence z1, z2, While the problem formulation is somewhat different from the
statistical learning framework we have been focusing on all this time, much of the same tools
we have seen can be applied to the learning problems.

The performance analysis of stochastic gradient descent we looked at in Chapter 13 is
about the performance of the stochastic gradient descent algorithm, such that the data points
z1, . . . , zn were fixed. All the stochastic effects were due to internal randomization in the
algorithm, and the guarantees were uniform in z1, . . . , zn.

We shall focus on the online, or adversarial, function minimization problem.1 An influen-
tial paper in this line of work is the one of [Zin03], although there is a long line of literature
on learning in an adversarial context.

14.1. Online convex programming and a regret bound

The paper of Zinkevich [Zin03] sparked much interest in the adversarial framework
for modeling online function minimization. The paper shows that a projected gradient
descent algorithm achieves zero asymptotic average regret rate for minimizing an arbitrary
sequence of uniformly Lipschitz convex functions over a closed bounded convex set in Rd.
The framework involves objects familiar to us, although the terminology is a bit closer to
game theory.

1There is work on a related online learning problem for which the player can select a label ŷt at each
time after observing xt. Then the actual label yt is revealed and the player incurs the loss `((xt, yt), ŷt). A
simple case is the 0-1 loss. An algorithm A for this problem produces a label ŷt = A(x1, . . . , xt, y1, . . . , yt−1)
for each t. See [SSBD14] for an introduction.

180

• Let F be a nonempty, closed, convex subset of a Hilbert space H. It is assumed F is
bounded, so D := max{‖f − f ′‖ : f, f ′ ∈ F‖} <∞. The player selects actions from
F.
• Let Z be a set, denoting the possible actions of the adversary.
• Let ` : F × Z→ R+. The interpretation is that `(ft, zt) is the loss to the player for

step t. We sometimes use the notation `t : Z→ R+, defined by `t(f) = `(f, zt).
• Suppose the player has access to an algorithm that can compute `t(f) and ∇`t(f)

for a given f.
• Suppose the player has access to an algorithm that can calculate Π(f) for any
f ∈ Rd, where Π : H → F is the projection mapping: Π(f) = arg min{‖f − f ′‖2 :
f ′ ∈ F}, that maps any f ∈ H to a nearest point in F.
• T ≥ 1 represents a time horizon of interest.

The online convex optimization game proceeds as follows.

• At each time step t from 1 to T , the player chooses ft ∈ F

• The adversary chooses zt ∈ Z
• The player observes zt and incurs the loss `(ft, zt).

Roughly speaking, the player would like to select the sequence of actions (ft) to minimize
the total loss for some time-horizon T, or equivalently, minimize the corresponding average
loss per time step:

JT ((ft)) :=
T∑

t=1

`(ft, zt) LT ((ft)) :=
1

T
JT ((ft)).

If we wanted to emphasize the dependence on zT we could have writen JT ((ft), z
T) and

LT ((ft), z
T) instead. A possible strategy of the player is to use a fixed f ∗ ∈ F for all time, in

which case we write the total loss as JT (f ∗) :=
∑T

t=1 `(f
∗, zt) and the loss per time step as

LT (f ∗) = 1
T
JT (f ∗). Note that LT (f ∗) is the empirical loss for f ∗ for T samples. If the player

is extremely lucky, or if for each t a genie knowing zt in advance reveals an optimal choice to
the player, the player could use f genie

t := arg minf∈F `(f, zt). Typically it is unreasonable to
expect a player, without knowing zt before selecting ft, to achieve, or even nearly achieve,
the genie-assisted minimum loss.

It turns out that a realistic goal is for the player to make selections that perform nearly as
well as any fixed strategy f ∗ that could possibly be selected after the sequence zT is revealed.
Specifically, if the player uses (ft) then the regret (for not using an optimal fixed strategy)
is defined by:

RT ((ft)) = JT ((ft))− inf
f∗∈F

JT (f ∗),

where for a particular f ∗, JT ((ft)) − JT (f ∗) is the regret for using (ft) instead of f ∗. We
shall be interested in strategies the player can use to (approximately) minimize the regret.
Even this goal seems ambitious, but one important thing the player can exploit is that the
player can let ft depend on t, whereas the performance the player aspires to match is that
of the best policy that is constant over all steps t.

Zinkevich [Zin03] showed that the projected gradient descent algorithm, defined by

ft+1 = Π(ft − αt∇`t(ft)),(14.1)

181

meets some performance guarantees for the regret minimization problem. Specifically, under
convexity and the assumption that the functions `t are all L-Lipschtiz continuous, Zinkevich
showed that regret O(LD

√
T) is achievable by gradient descent. Under such assumptions the√

T scaling is, in fact, the best possible. The paper of Hazan, Agarwal, and Kale [HAK07]
shows that if, in addition, the functions `t are all m-strongly convex for some m > 0, then

gradient descent can achieve O
(
L2

m
log T

)
regret. The paper [HAK07] ties together sev-

eral different previous approaches including follow-the-leader, exponential weighting, Cover’s
algorithm, and gradient descent. The following theorem combines the analysis of [Zin03]
for the case of Lipschitz continuous objective functions and the analysis of [HAK07] for
strongly convex functions. The algorithms used for the two cases differ only in the stepsize
selections. Recall that D is the diameter of F.

Theorem 14.1. Suppose `(·, z) is convex and L-Lipschtiz continuous for each z, and
suppose the projected gradient algorithm (14.1) is run with stepsizes (αt)t≥1.
(a) If αt = c√

t
for t ≥ 1, then the regret is bounded as follows:

RT ((ft)) ≤
D2
√
T

2c
+

(√
T − 1

2

)
L2c,

which for c = D
L
√

2
gives:

RT ((ft)) ≤ DL
√

2T .

(b) If, in addition, `(·, z) is m-strongly convex for some m > 0 and αt = 1
mt

for t ≥ 1, then
the regret is bounded as follows:

RT ((ft)) ≤
L2(1 + log T)

2m
.

Proof. Most of the proof is the same for parts (a) and (b), where for part (a) we simply
take m = 0. Let f [t+1 = ft − αt∇`t(ft), so that ft+1 = Π(f [t+1). Let f ∗ ∈ F be any fixed
policy. Note that

f [t+1 − f ∗ = ft − f ∗ − αt∇`t(ft)
‖f [t+1 − f ∗‖2 = ‖ft − f ∗‖2 − 2αt〈f t − f ∗,∇`t(ft)〉+ α2

t‖∇`t(ft)‖2.

By the fact f ∗ = Π(f ∗) and the contraction property of Π (see Proposition 4.2),
‖ft+1 − f ∗‖ ≤ ‖f [t+1 − f ∗‖. Also, by the Lipschitz assumption, ‖∇`t(ft)‖ ≤ L. Therefore,

‖ft+1 − f ∗‖2 ≤ ‖ft − f ∗‖2 − 2αt〈ft − f ∗,∇`t(ft)〉+ α2
tL

2

or, equivalently,

2
〈
ft − f ∗,∇`t(ft)

〉
≤ ‖ft − f

∗‖2 − ‖ft+1 − f ∗‖2

αt
+ αtL

2.(14.2)

(Equation (14.2) captures well the fact that this proof is based on the use of ‖ft − f ∗‖
as a potential function. The only property of the gradient vectors ∇`t(ft) used so far is
‖∇`t(ft)‖ ≤ L. The specific choice of using gradient vectors is exploited next, to bound
differences in the loss function.) The strong convexity of `t implies `t(f

∗) − `t(ft) ≥ 〈f ∗ −
182

ft,∇`t(ft)〉+ m
2
‖f ∗ − ft‖2, or equivalently,

2(`t(ft)− `t(f ∗)) ≤ 2〈ft − f ∗,∇`t(ft)〉 −m‖ft − f ∗‖2, which combined with (14.2) gives:

2(`t(ft)− `t(f ∗)) ≤
‖ft − f ∗‖2 − ‖ft+1 − f ∗‖2

αt
+ αtL

2 −m‖ft − f ∗‖2(14.3)

We shall use the following for 1 ≤ t ≤ T − 1 :

‖ft − f ∗‖2 − ‖ft+1 − f ∗‖2

αt
=
‖ft − f ∗‖2

αt
− ‖ft+1 − f ∗‖2

αt+1

+

(
1

αt+1

− 1

αt

)
‖ft+1 − f ∗‖2.

Summing each side of (14.3) from t = 1 to T yields:

2(JT ((ft))− JT (f ∗)) ≤
(

1

α1

−m
)
‖f1 − f ∗‖2 − 1

αT
‖fT+1 − f ∗‖2

+
T−1∑

t=1

(
1

αt+1

− 1

αt
−m

)
‖ft+1 − f ∗‖2 + L2

T∑

t=1

αt

≤ D2

(
1

α1

−m+
T−1∑

t=1

(
1

αt+1

− 1

αt
−m

))
+ L2

T∑

t=1

αt

≤ D2

(
1

αT
−mT

)
+ L2

T∑

t=1

αt(14.4)

(Part (a)) If m = 0 the bound (14.4) becomes

2(JT ((ft))− JT (f ∗)) ≤ D2

αT
+ L2

T∑

t=1

αt(14.5)

Now if αt = c√
t
, then

T∑

t=1

αt = c+
T∑

t=2

c√
t
≤ c+ c

∫ T

t=1

cdt√
t

= (2
√
T − 1)c

and we get

JT ((ft))− JT (f ∗) ≤ D2
√
T

2c
+

(√
T − 1

2

)
L2c

If c = D
L
√

2
then JT ((ft)) − JT (f ∗) ≤ DL

√
2T . Since f ∗ ∈ F is arbitrary it follows that

RT ((ft)) ≤ DL
√

2T .
(Part (b)) For the case m > 0 and αt = 1

mt
for all t ≥ 1, the first term on the right-hand

side of (14.4) is zero, and

T∑

t=1

αt =
1

m

(
1 +

T−1∑

t=2

1

t

)
≤ 1 + log T

m
,

so part (b) of the theorem follows from (14.4) and the fact f ∗ ∈ F is arbitrary. �

183

14.2. Online perceptron algorithm

The perceptron algorithm of Rossenblatt (1958) is an iterative algorithm for training
binary classifiers of the form y = sgn(〈f, x〉). In this section we show that the perceptron
algorithm can be viewed as an instance of the gradient descent algorithm for a certain online
convex optimization problem, and adapt the proof of Theorem 14.1 to bound the total
number of iterations in the realizable case. Let the original data set be denoted by z̃n. At
each time step t, the gradient descent algorithm will be applied to a sample zt = z̃It for a
choice of index It ∈ [n] to be described in what follows. We use z and (x, y) interchangeably,

and, similarly, zt and (xt, yt) interchangeably. Consider the surrogate loss function ˜̀(f, x) =
(1−y〈f, x〉)+, which is the penalized version of 0-1 loss arising from use of the hinge penalty
function ϕ(u) = (1 + u)+. At step t the learner selects ft, and then the adversary selects a

convex loss function. Usually we would think to use ˜̀t(·) = ˜̀(·, zt). However, the rules of
online convex function minimization allow the adversary to present a different sequence of
convex functions `t : t ≥ 1, determined as follows:

• If yt〈f, xt〉 ≥ 0 (i.e. if ft correctly classifies zt), then `t ≡ 0.

• If yt〈f, xt〉 < 0 then `t ≡ ˜̀t.
Note that `t is convex for each t and

∇`t(ft) =

{
0 if yt = sgn(〈ft, xt〉)
−ytxt else.

The gradient descent algorithm, with no projection and constant stepsize α, becomes::

ft+1 =

{
ft if yt = sgn(〈ft, xt〉)

ft + αytxt else,
(14.6)

where we use the initial state f1 = 0. Since ft is proportional to α for all t, the classifiers ft
are all proportional to α, so the 0-1 loss performance of the algorithm does not depend on
α. We included the stepsize α > 0 only for the proof. We now specify how the index It is
chosen. If there is some sample that ft does not correctly label, then It is the index of such
a sample. Otherwise, It ∈ [n] is arbitrary. The classical perceptron algorithm corresponds
to this choice of It, the update rule (14.6), and stopping at the first time t it is found that
ft separates the original data.

Proposition 14.1. (Perceptron classification, realizable case) Let

L ≥ max
1≤i≤n

‖xi‖

and

B ≥ min{‖f ∗‖ : yi〈f ∗, xi〉 ≥ 1 for i ∈ [n]}.
At most B2L2 updates are needed for the perceptron algorithm to find a separating classifier.

Proof. (Variation of the proof of Theorem 14.1.) By the assumptions, `t is L-Lipschitz
continuous for all t. Let f ∗ be a vector so that ‖f ∗‖ ≤ B and yi〈f ∗, xi〉 ≥ 1 for i ∈ [n]. By
(14.3) with m = 0 and αt = α for all t,

2(`t(ft)− `t(f ∗)) ≤
‖ft − f ∗‖2 − ‖ft+1 − f ∗‖2

α
+ αL2

184

Summing over t from 1 to T yields

2(JT ((ft))− JT (f ∗)) ≤ 1

α
‖f1 − f ∗‖2 − 1

α
‖fT+1 − f ∗‖2 + αL2T

≤ B2

α
+ αL2T

Now `t(ft) ≥ 1 if ft does not separate the data, whereas `t(f
∗) = 0 for all t. Thus, if none

of f1, . . . fT separate the data, then 2T ≤ 2(JT ((ft))− JT (f ∗)) ≤ B2

α
+ αL2T for any α > 0.

Taking α = B
L
√
T

yields T ≤ BL
√
T , or T ≤ (BL)2. Thus, at most (BL)2 updates are needed

for the algorithm to find a separating classifier. �

14.3. On the generalization ability of online learning algorithms

This section is based on [CBCG04]. An instance of the on-line convex function mini-
mization framework of Section 14.1 is represented by a tuple (F,Z, `). An online algorithm
A prescribes an action f1 and then, for each t ≥ 1, an action ft+1 = A(f1, . . . , ft, z1, . . . , zt).
Section 14.1 considered regret for arbitrary sequences of samples. Consider instead, the
statistical learning framework, such that the samples Z1, Z2, . . . , Zn are independent and
identically distributed random variables with values in Z and some probability distribution
P. Consider using an algorithm A for online convex function minimization with T = n, so
the algorithm makes one pass through the data using the samples Z1, . . . , Zn in order.

The sequence f1, f2, . . . , fn produced by A is random, due to the randomness of the Z’s.
However, for each t ∈ [n], ft is determined by A and Z1, . . . , Zt−1, so ft is independent of Zt.
Therefore, given ft, `(ft, Zt) is an unbiased estimator of the generalization performance of ft.
In essence, each subsequent sample Zt is a test sample for ft. It is therefore to be expected
that online algorithms in the statistical framework have good generalization ability. An
application of the Azuma-Hoeffding inequality (Theorem 2.1) makes this precise:

Theorem 14.2. (Generalization ability of on-line algorithms) Suppose ` is bounded, with
values in [0, 1]. Suppose Z1, Z2, . . . are independent and identically distributed, and let (ft)
be produced by an online learning algorithm A. Then for any T ≥ 1, with probability at least
1− δ,

1

T

T∑

i=1

L(ft) ≤
1

T

T∑

t=1

`(ft, Zt) +

√
2 log 1

δ

T
,(14.7)

where L(f) denotes the generalization loss of a hypothesis f for the probability distribution

P used to generate the samples, and 1
T

∑T
t=1 `(ft, Zt) = LT ((ft)) is the average loss per

sample suffered by the online learner. Furthermore, if `(·, z) is convex for each z fixed, and

fT = 1
T

∑T
t=1 ft, then with probability at least 1− δ,

L(fT) ≤ 1

T

T∑

t=1

`(ft, Zt) +

√
2 log 1

δ

T
.(14.8)

Proof. Let Y0 = 0 and Yt =
∑t

s=1(L(fs) − `(fs, Zs)). Since
E [L(fs)− `(fs, Zs)|Z1, . . . , Zs−1] = 0 for all s, (Yt) is a martingale. Also,

185

|Yt − Yt−1| = |L(ft) − `(ft, Zt)| ≤ 1 for all t. Thus, by the Azuma-Hoeffding inequal-
ity with Bt = Yt−1 and c = 2, for any ε > 0,

P[YT ≥ εT] ≤ exp

{
−2ε2T 2

4T

}
= exp

{
−ε

2T

2

}
.

Setting ε =

√
2 log 1

δ

T
and rearranging yields (14.7). For the second part, the assumed convexity

of `(·, z) implies convexity of L, so by Jensen’s inequality L(fT) ≤ 1
T

∑T
i=1 L(ft). Therefore,

(14.8) follows from (14.7). �

An interpretation of (14.7) is that the average (over t ∈ [T]) generalization loss of the
hypotheses generated by the online learning algorithm A is not much larger than LT ((ft)),
with high probability. Recall that LT ((ft)) is the loss incurred by the learner, which is
version of empirical loss, although for a sequence of hypotheses (ft) rather than a single
hypothesis. The bound (14.8) shows that, in the case `(f, z) is convex in f , the hypotheses
of the algorithm can be combined to yield a hypothesis fT that has generalization loss, in
the standard sense, not much larger than LT ((ft)) incurred by the online learning algorithm.

In the statistical learning framework, if `(f, z) is convex in f , Theorem 14.1 implies that
the average fT of the hypotheses (ft) provided by the projected gradient descent algorithm
represents an asymptotic ERM (AERM) algorithm. As we’ve seen earlier, generalization
and AERM together provide consistency; the following corollary illustrates that point.2

Corollary 14.1. Suppose F is a closed convex subset of a Hilbert space with finite
diameter D. Suppose ` : F × Z → [0, 1] is such that `(·, z) is L-Lipschitz continuous for
each fixed z ∈ Z. Suppose Z1, Z2, . . . , Zn are independent and identically distributed. Let
fn = 1

n

∑n
t=1 ft, where f1, . . . , fn is produced by the projected gradient descent algorithm with

step size αt = D
L
√

2t
for t ≥ 1 (as in Theorem 14.1(a)). Then with probability at least 1− 2δ,

L(fn) ≤ L∗ +DL

√
2

n
+

√
8 log 1

δ

n
,

Proof. The last statement of Theorem 14.2 with T = n implies that, with probability
at least 1− δ,

L(fn) ≤ 1

n

n∑

t=1

`(ft, Zt) +

√
2 log 1

δ

n
.

Let f ∗ minimize the generalization loss: L∗ = L(f ∗). Theorem 14.1(a) implies that, with
probability one,

1

n

n∑

t=1

`(ft, Zt) ≤
1

n

n∑

t=1

`(f ∗, Zt) +DL

√
2

n
.

2Earlier we also found that, in a certain sense, generalization is equivalent to stability with respect to
replace one sample perturbations. In the context of this section the Azuma-Hoeffding inequality is used to
show generalization; stability is not used in this section.

186

The Azuma-Hoeffding inequality, as used in the proof of Theorem 14.2, and the choice
L(f ∗) = L∗, implies that with probability at least 1− δ,

1

n

n∑

t=1

`(f ∗, Zt) ≤ L∗ +

√
2 log 1

δ

n
.

By the union bound, with probability at least 1−2δ, the previous three centered inequalities
all hold, implying the corollary. �

If `(f, z) is not convex in f, the bound (14.7) still implies that at least one of the hy-
potheses (ft) generated by the algorithm has generalization loss L(ft) not much larger than
the loss of the on-line learning algorithm. Moreover, for each t, the generalization loss, L(ft),
can be estimated by applying ft not only to Zt, but to Zt, Zt+1, . . . , ZT , to help identify a
value t∗ so L(ft∗) ≈ mint L(ft). See [CBCG04] for details. This provides a single output
hypothesis ft̂ with good generalization performance, even for non-convex loss. If somehow
an AERM property is also true, a consistency result along the lines of Corollary 14.1 could
be achieved for nonconvex loss.

187

CHAPTER 15

Minimax lower bounds

Now that we have a good handle on the performance of ERM and its variants, it is time
to ask whether we can do better. For example, consider binary classification: we observe n
i.i.d. training samples from an unknown joint distribution P on X× {0, 1}, where X is some

feature space, and for a fixed class F of candidate classifiers f : X→ {0, 1} we let f̂n be the
ERM solution

f̂n = arg min
f∈F

1

n

n∑

i=1

1{f(Xi)6=Yi}.(15.1)

If F is a VC class with VC dimension V , then the excess risk of f̂n over the best-in-class
performance L∗(F) ≡ inff∈F L(f) satisfies

L(f̂n) ≤ L∗(F) + C

(√
V

n
+

√
log(1/δ)

n

)

with probability at least 1− δ, where C > 0 is some absolute constant. Integrating, we also
get the following bound on the expected excess risk:

E
[
L(f̂n)− L∗(F)

]
≤ C

√
V

n
,(15.2)

for some constant C > 0. Crucially, the bound (15.2) holds for all possible joint distribu-
tions P on X × {0, 1}, and the right-hand side is independent of P — it depends only on
the properties of the class F! Thus, we deduce the following remarkable distribution-free
guarantee for ERM: for any VC class F, the ERM algorithm (15.1) satisfies

sup
P∈P(X×{0,1})

EP

[
LP (f̂n)− L∗P (F)

]
≤ C

√
V

n
.(15.3)

(We have used subscript P to explicitly indicate the fact that the quantity under the supre-
mum depends on the underlying distribution P . In the sequel, we will often drop the sub-
script to keep the notation uncluttered.) Let’s take a moment to reflect on the significance of
the bound (15.3). What it says is that, regardless of how “weird” the stochastic relationship
between the feature X ∈ X and the label Y ∈ {0, 1} might be, as long as we scale our am-
bition back and aim at approaching the performance of the best classifier in some VC class
F, the ERM algorithm will produce a good classifier with a uniform O(

√
V/n) guarantee on

its excess risk.
At this point, we stop and ask ourselves: could this bound be too pessimistic, even when

we are so lucky that the optimal (Bayes) classifier happens to be in F? (Recall that the

188

Bayes classifier for a given P has the form

f ∗(x) =

{
1, if η(x) ≥ 1/2

0, otherwise
,

where η(x) = E[Y |X = x] = P(Y = 1|X = x) is the regression function.) Let P(F) denote
the subset of P(X×{0, 1}) consisting of all joint distributions of X ∈ X and Y ∈ {0, 1}, such
that f ∗ ∈ F. Then from (15.2) we have

sup
P∈P(F)

E
[
L(f̂n)− L(f ∗)

]
≤ C

√
V

n
,(15.4)

where f̂n is the ERM solution (15.1). However, we know that if the relationship between X
and Y is deterministic, i.e., if Y = f ∗(X), then ERM performs much better. More precisely,
let P0(F) be the zero-error class :

P0(F) := {P ∈ P(F) : Y = f ∗(X) a.s.} .
Then one can show that

sup
P∈P0(F)

E
[
L(f̂n)− L(f ∗)

]
≤ C

V

n
,(15.5)

a much better bound than the “global” bound (15.4) (see, e.g., the book by Vapnik [Vap98]).
This suggests that the performance of ERM is somehow tied to how “sharp” the behavior
of η is around the decision boundary that separates the sets {x ∈ X : η(x) ≥ 1/2} and
{x ∈ X : η(x) < 1/2}. To see whether this is the case, let us define, for any h ∈ [0, 1], the
class of distributions

P(h,F) := {P ∈ P(F) : |2η(X)− 1| ≥ h a.s.}
(in that case, the distributions in P(h,F) are said to satisfy the Massart noise condition
with margin h.) We have already seen the two extreme cases:

• h = 0 — this gives P(0,F) = P(F) (the bound |2η − 1| ≥ 0 holds trivially for any
P).
• h = 1 — this gives the zero-error regime P(1,F) = P0(F) (if |2η − 1| ≥ 1 a.s., then
η can take only values 0 and 1 a.s.).

However, intermediate values of h are also of interest: if a distribution P belongs to P(h,F)
for some 0 < h < 1, then its regression function η makes a jump of size h as we cross the
decision boundary. With this in mind, for any n ∈ N and h ∈ [0, 1] let us define the minimax
(excess) risk

Rn(h,F) := inf
f̃n

sup
P∈P(h,F)

E
[
L(f̃n)− L(f ∗)

]
,(15.6)

where the infimum is over all learning algorithms f̃n based on n i.i.d. training samples. The
term “minimax” indicates that we are minimizing over all admissible learning algorithms,
while maximizing over all distributions in a given class. The following result was proved by
Pascal Massart and Élodie Nédélec [MN06]:

189

Theorem 15.1. Let F be a VC class of binary-valued functions on X with VC dimension
V ≥ 2. Then for any n ≥ V and any h ∈ [0, 1] we have the lower bound

Rn(h,F) ≥ c min

(√
V

n
,
V

nh

)
,(15.7)

where c > 0 is some absolute constant (c = 1/32 is sufficient).

Let us examine some implications:

• When h = 0, the right-hand side of (15.7) is equal to c
√
V/n. Thus, without

any further assumptions, ERM is as good as it gets (it is minimax-optimal), up to
multiplicative constants.
• When h = 1 (the zero-error case), the right-hand side of (15.7) is equal to cV/n,

which matches the upper bound (15.5) up to constants. Thus, if we happen to know
that we are in a zero-error situation, ERM is minimax-optimal as well.
• For intermediate values of h, the lower bound depends on the relative sizes of h, V ,

and n. In particular, if h ≥
√
V/n, we have the minimax lower bound Rn(h,F) ≥

cV/nh. Alternatively, for a fixed h ∈ (0, 1), we may think of n∗ = dV/h2e as the
cutoff sample size, beyond which the effect of the margin condition on η can be
“spotted” and exploited by a learning algorithm.
• In the same paper, Massart and Nédélec obtain the following upper bound on ERM:

sup
P∈P(h,F)

E
[
L(f̂n)− L(f ∗)

]
≤

C

√
V

n
, if h ≤

√
V/n

C
V

nh

(
1 + log

nh2

V

)
, if h >

√
V/n

.(15.8)

Thus, ERM is nearly minimax-optimal (we say “nearly” because of the extra log
factor in the above bound; in fact, as Massart and Nédélec show, the log factor is
unavoidable when the function class F is “rich” in a certain sense). The proof of
the above upper bound is rather involved and technical, and we will not get into it
here.

The appearance of the logarithmic term in (15.8) is rather curious. Given the lower bound
of Theorem 15.1, one may be tempted to dismiss it as an artifact of the analysis used by
Massart and Nédélec. However, as we will now see, in certain situations this logarithmic term
is unavoidable. To that end, we first need a definition: We say that a class F binary-valued
functions f : X → {0, 1} is (N,D)-rich, for some N,D ∈ N, if there exist N distinct points
x1, . . . , xN ∈ X, such that the projection

F(xN) =
{

(f(x1), . . . , f(xN)) : f ∈ F
}

of F onto xN contains all binary strings of Hamming weight1 D. Some examples:

• If F is a VC-class with VC dimension V , then it is (V,D)-rich for all 1 ≤ D ≤ V .
This follows directly from definitions.

1The Hamming weight of a binary string is the number of nonzero bits it has.

190

• A nontrivial example, and one that is relevant to statistical learning, is as follows.
Let F be the collection of indicators of all halfspaces in Rd, for some d ≥ 2. There is
a result in computational geometry which says that, for any N ≥ d+1, one can find
N distinct points x1, . . . , xN , such that F(xn) contains all strings in {0, 1}N with
Hamming weight up to, and including, bd/2c. Consequently, F is (N, bd/2c)-rich
for all N ≥ d+ 1.

We can now state the following result [MN06]:

Theorem 15.2. Given some D ≥ 1, suppose that F is (N,D)-rich for all N ≥ 4D. Then

Rn(h,F) ≥ c(1− h)
D

nh

[
1 + log

nh2

D

]
(15.9)

for any
√
D/n ≤ h < 1, where c > 0 is some absolute constant (c = 1/72 is sufficient).

We will present the proofs of Theorems 15.1 and 15.2 in Sections 15.2 and 15.4, after giving
some necessary background on minimax lower bounds.

15.1. The Bhattacharyya coefficient and bounds on average error for binary
hypothesis testing

This section presents useful bounds from the theory of detection that will be used in
the next section to provide a lower bound on the probability of error for concept learning.
Consider a binary hypothesis testing problem with equal prior probabilities π0 = π1 = 1

2
.

Suppose that the observation Y has probability mass function pi under hypothesis Hi for
i = 0 or i = 1. For any decision rule f : Y → {0, 1}, the average probability of error
is 1

2

∑
y p0(y)f(y) + p1(y)(1 − f(y)). A decision rule is Bayes optimal (i.e. minimizes the

average error probability), if and only if it minimizes p0(y)f(y) + p1(y)(1− f(y)) for each y.
That is, the Bayes optimal decision rules are given by

f ∗(y) =

1 if p1(y) > p0(y)
0 if p1(y) < p0(y)

0 or 1 if p0(y) = p1(y).

The corresponding minimum probability of error is given by

p∗e =
1

2

∑

y

p0(y) ∧ p1(y).

Let the Bhattacharyya coefficient for a pair of discrete probability distributions p0 and p1

be defined by:

ρ =
∑

y

√
p0(y)p1(y)

Given probability mass functions p1, . . . , pn, let ⊗nj=1pj denote the product form joint prob-
ability mass function, (y1, . . . , yn) 7→ p1(y1) · · · pn(yn). In other words, the joint distribution
⊗nj=1pj is the tensor product of the marginal distributions. The following lemma goes back
at least as far as a report of Kraft in the 1950’s (see [Kai67]).

191

Lemma 15.1. (a) For any two distributions p0 and p1, the minimum average probability
of error for the binary hypothesis testing problem with equal priors satisfies2

ρ2

4
≤ p∗e ≤

ρ

2
.(15.10)

(b) The Bhattacharyya coefficient tensorizes. That is, the Bhattacharyya coefficient for ten-
sor products is the product of the Bhattacharyya coefficients:

ρ(⊗nj=1p1,j,⊗nj=1p0,j) =
n∏

j=1

ρ(p1,j, p0,j)

Proof. Summing the identity p0(y) + p1(y) = 2(p0(y) ∧ p1(y)) + |p0(y) − p1(y)| over y
yields

2 = 4p∗e +
∑

y

|p0(y)− p1(y)|.(15.11)

The Cauchy-Schwarz inequality yields
∑

y

|p0(y)− p1(y)| =
∑

y

∣∣√p0(y) +
√
p1(y)

∣∣∣∣√p0(y)−
√
p1(y)

∣∣

≤

√√√√
(∑

y

(√
p0(y) +

√
p1(y)

)2
)(∑

y

(√
p0(y)−

√
p1(y)

)2
)

=
√

2(1 + ρ)2(1− ρ) = 2
√

1− ρ2.(15.12)

Combining (15.11)and (15.12), and using the fact
√

1− u ≤ 1 − u
2

for 0 ≤ u ≤ 1 (square
both sides to check) yields

p∗e ≥
1

2

[
1−

√
1− ρ2

]
≥ ρ2

4
.

For the other direction, note that p0(y)∧p1(y) ≤
√
p0(y)p1(y). Summing over y and dividing

through by 2 yields pe ≤ ρ/2. The proof of part (b) is left to the reader. �

Example 15.1. Let 0 ≤ h ≤ 1. Suppose under p1, Y has the Bernoulli
(

1+h
2

)
distri-

bution and under p0, Y has the Bernoulli
(

1−h
2

)
distribution. Then ρ =

√
1− h2 so that

1−h2
4
≤ p∗e ≤

√
1−h2
2

. More generally, if there are n observations, such that under Hi they
are independent and identically distributed with the Bernoulli distribution pi just mentioned,
then the Bhattacharyya coefficient is ρn =

√
(1− h2)n and the minimum average Bayesian

error satisfies

(1− h2)n

4
≤ p∗e,n,h ≤

(1− h2)n/2

2
.(15.13)

2The proof shows the slightly stronger inequality, 1
2

[
1−

√
1− ρ2

]
≤ p∗e ≤ ρ

2 , which is equivalent to

1
2H

2 ≤ dTV ≤ H
√

1−H2/4, where dTV (p0, p1) = 1
2

∑
y |p0(y) − p1(y)| and H2(p0, p1) ,

∑
y(
√
p0(y) −√

p1(y))2. H2 is the version of Hellinger distance without factor 1
2 , and ρ is also known as the Hellinger

affinity.

192

15.2. Proof of Theorem 15.1

Theorem 15.1 is proved in this section. For convenience, we repeat the assumptions:

• X is feature space
• F is a family of classifiers f such that f : X→ {0, 1}.
• P = P(X× [0, 1]) is the set of all probability measures on X× {0, 1}
• For a given P , L(f) = P{Y 6= f(X)} for f ∈ F, and L∗ = inff∈P L(f). (As usual,

for brevity, the subscript “P” is omitted from L in this instance.)
• For a given P ∈ P, η(X) , P (Y = 1|X). That is, η is the Bayes optimal predictor of
Y given X for mean square error loss (not 0-1 loss!) under probability distribution
P.
• For h ∈ [0, 1], P(h) is the set of P ∈ P such that the corresponding estimator η can

be taken to satisfy η(x) ∈
[
0, 1−h

2

]
∪
[

1+h
2
, 1
]

for all x ∈ X.
• A learning algorithm A maps Zn to F for any given number of samples
n. The min-max excess risk for P(h) and F is given by: Rn(h,F) ,

infA supP∈P(h) En

[
L(f̂n)− L∗

]
, where f̂n = A(Z1, . . . , Zn) and Z1, . . . , Zn are inde-

pendent, each with distribution P. Note that Rn(h,F) is nonincreasing in h because
if h′ ≥ h, then P(h′) ⊂ P(h).

Suppose the VC dimension V of F is finite and V ≥ 2. We shall show that for any
h ∈ [0, 1] and n ≥ V − 1,

Rn(h,F) ≥ 1

16
min

(√
V − 1

n
,
V − 1

nh

)
.(15.14)

This will imply Theorem 15.1.
By the definition of VC dimension, there exists a collection of V points, x1, . . . , xV in X

such that F shatters x1, . . . , xV . Thus, for every b ∈ {0, 1}V−1, there is a function fb ∈ F such
that (fb(x1), . . . , fb(xV−1)) = b, and fb(xV) = 0. Let 0 ≤ p ≤ 1, to be determined later. Let
PX denote the discrete probability distribution on X that assigns probability p

V−1
to each of

x1, . . . , xV−1 and the remaining probability, 1 − p, to the point xV . For each b ∈ {0, 1}V−1,
let Pb denote the joint probability distribution on X× {0, 1} that has marginal distribution
of X equal to PX, and conditional distribution of Y given X based on the classifier fb with a
noisy label, where the probability of label flipping is 1−h

2
. That is, Pb is a discrete probability

distribution on X×{0, 1} with marginal distribution PX and ηb(x) = 1−h
2

+hfb(x) for x ∈ X.
Note the following facts about Pb and fb :

• For b ∈ {0, 1}V−1 and f ∈ F, the generalization loss under Pb is given by

Lb(f) = 1−h
2

+ ph
V−1

∑V−1
v=1 1{f(xv)6=bv} + (1− p)h1{f(xV)6=0}.

• Pb ∈ P(h) for any b ∈ {0, 1}V−1.
• fb is a Bayes optimal classifier for probability distribution Pb and L∗b = Lb(fb) = 1−h

2
.

Let P
n

denote the joint probability distribution on {0, 1}V−1×(X×{0, 1})n such that the
joint distribution of B, (X1, Y1), . . . , (Xn, Yn) under P

n
is such that B is uniformly distributed

over {0, 1}V−1 and given B = b, the conditional distribution of (X1, Y1), . . . , (Xn, Yn) is P n
b .

Let f̂n denote a classifier determined by an arbitrary learning algorithm A applied to n

random labeled samples, so f̂n = A((X1, Y1), . . . , (Xn, Yn)). Note that for any b ∈ {0, 1}V ,

193

the joint distribution of

(X1, Y1), . . . , (Xn, Yn), f̂n, b under P n
b is the same as the conditional joint distribution of

(X1, Y1), . . . , (Xn, Yn), f̂n, B under P
n

given B = b. For simplicity and without loss of gener-

ality, we assume f̂n always assigns the optimal label for feature xV , namely, f̂n(xV) = 0.
The following facts should now be apparent:

LB(f̂n) =
1− h

2
+

ph

V − 1

V−1∑

v=1

1{f̂n(xv)6=Bv}

E
n
[LB(f̂n)] =

1− h
2

+
ph

V − 1

V−1∑

v=1

P
n{f̂n(xv) 6= Bv}

1

2V−1

∑

b∈{0,1}V−1

En
b [Lb(f̂n)] =

1− h
2

+
ph

V − 1

V−1∑

v=1

P
n{f̂n(xv) 6= Bv}.(15.15)

Recalling that L∗b = 1−h
2

for all b ∈ {0, 1}V−1 and using the fact that the maximum is greater
than or equal to the average, (15.15) yields

sup
P∈P(h)

(En[L(f̂n)]− L∗) ≥ max
b∈{0,1}V−1

(En
b [Lb(f̂n)]− L∗b)

≥ ph

V − 1

V−1∑

v=1

P
n{f̂n(xv) 6= Bv}.(15.16)

We thus focus on finding a lower bound for the right-hand side of (15.16). For any v ∈ [V −1]
let Nv =

∣∣{i : Xi = xv}
∣∣, so that Nv is the number of samples with feature vector equal to xv.

Given Xn = (X1, . . . , Xn), the V −1 vectors of labels (Yi : Xi = xv)1≤v≤V−1 are independent.
So for each v, for the purposes of estimating Bv, it is optimal to base the decision on the Nv

observations (Yi : Xi = xv). Thus, for each v, the learner faces a binary hypothesis testing
problem of the form of Example 15.1. Applying the lower bound in (15.13) to each term
on the right-hand side of (15.16), and using the fact that for each v, under P

n
, Nv has the

binomial distribution with parameters n and p
V−1

, thus yields

P
n{f̂n(xv) 6= Bv|Nv} ≥

1

4
(1− h2)Nv

P
n{f̂n(xv) 6= Bv} ≥

1

4
E
n
[(1− h2)Nv]

=
1

4

(
p

V − 1
(1− h2) + 1− p

V − 1

)n

=
1

4

(
1− ph2

V − 1

)n

Then (15.16) yields:

sup
P∈P(h)

(En[L(f̂n)]− L∗) ≥ ph

4

(
1− ph2

V − 1

)n
(15.17)

194

Since (15.17) holds for any learning algorithm A, it follows that

Rn(h,F) ≥ ph

4

(
1− ph2

V − 1

)n
(15.18)

for h, p ∈ [0, 1], V ≥ 2, and n ≥ 1.

Case 1: Suppose
√

V−1
n
≤ h ≤ 1. Let p = V−1

(n+1)h2
. Then (15.18) yields

Rn(h,F) ≥ V − 1

4(n+ 1)h

(
1− 1

n+ 1

)n

=
V − 1

4nh

(
1− 1

n+ 1

)n+1

≥ V − 1

16hn

Case 2: Suppose 0 ≤ h ≤
√

V−1
n
. Then the monotonicity of Rn(h,F) and Case 1 for

h =
√

V−1
n

(this value of h is in [0, 1] by the assumption n ≥ V − 1) yield

Rn(h,F) ≥ Rn

(√
V − 1

n
,F

)
≥ 1

16

√
V − 1

n
.

Thus, in either case, (15.14) holds, and Theorem 15.1 is proved.

15.3. A bit of information theory

The entropy of a random variable X with pmf pX is defined by H(X) =
∑

i pX(i) log 1
pX(i)

.

The entropy is a measure of randomness or spread of a probability distribution. If log 1
pX(i)

is a measure of how surprising it is to observe the value X = i then entropy is the mean
surprise of an observation. The maximum entropy distribution on n points is the uniform
distribution, with entropy log n. In this section the logarithms can be taken to be natural
logarithms; log e = 1. If X and Y are jointly distributed, the conditional entropy of X given
Y satisfies (applying Jensen’s inequality to the concave function −u log u):

H(Y |X) ,
∑

i

H(Y |X = i)pX(i)

=
∑

i

∑

j

−
(
pY |X(j|i) log pY |X(j|i)

)
pX(i)

≤
∑

j

−
(∑

i

pY |X(j|i)pX(i)

)
log

(∑

i

pY |X(j|i)pX(i)

)

=
∑

j

−pY (j) log pY (j) = H(Y).

It is easy to verify the decomposition rule H(X, Y) = H(X) +H(X|Y). Let X − Y − Z
denote the condition that X and Z are conditionally independent given Y. Then X − Y −Z
implies H(X|Y, Z) = H(X|Y).

The Shannon mutual information between X and Y is defined by I(X;Y) = H(X) −
H(X|Y). Thus, I(X;Y) is the reduction in the uncertainty of X due to learning Y.

195

The data processing inequality: If X − Y − Z then I(X;Y) ≥ I(X;Z). The data pro-
cessing inequality follows from the fact H(X|Y) = H(X|Y, Z) ≥ H(X|Z).

Recall that the KL divergence between two probability distributions on the same set is
defined by

D(p‖q) =
∑

i

p(i) log
p(i)

q(i)
,

with the understanding that 0 log 0 = 0. The mutual information can be expressed in terms
of the KL divergence in the following way.3

I(X;Y) =
∑

i

pX(i)D(pY |X(·|i) ‖ pY)(15.19)

, D(pY |X‖pY |pX)(15.20)

=
∑

i

{∑

j

pY |X(j|i) log
pY |X(j|i)
pY (j)

}
pX(i)(15.21)

The representation (15.19), denoted by the notation (15.20), has a very nice interpretation.
It shows that I(X;Y) is the weighted average of the divergences of the conditional distribu-
tions, pY |X(·|i), of Y from their weighted average distribution, where the weights are pX(i).
Replacing pY by another distribution Q in (15.21) yields

I(X;Y) =
∑

i

{∑

j

pY |X(j|i) log
pY |X(j|i)
Q(j)

}
pX(i) +

∑

i

∑

j

{
pY |X(j|i) log

Q(j)

pY (j)

}
pX(i)

= D(pY |X‖Q|pX) +
∑

j

pY (j) log
Q(j)

pY (j)

= D(pY |X‖Q|pX)−D(pY ‖Q)(15.22)

It is not hard to show using Jensen’s inequality that D(pY ‖Q) ≥ 0 with equality if and only
if pY = Q. Thus, (15.22) shows that for any distribution Q on the space of Y :

I(X;Y) ≤ D(pY |X‖Q|pX),(15.23)

with equality if and only if Q = pY . The advantage of the bound (15.23) is that often Q
can be a simpler distribution than pY , but for the bound to be effective, Q should be a
reasonably good approximation to pY so the difference D(pY ‖Q) is small.

In the context of the geometric interpretation (15.19) of mutual information, (15.23)
implies pY is the most central distribution on the space of Y values, in the sense that for any
other distribution Q, the weighted average of the divergences of the conditional distributions
from Q is minimized by Q = pY . (This reflects the fact that the KL divergence D(·‖·) is a
Bregman divergence.)

We close with two lemmas used in the next section. Let h(p) = −p log p−(1−p) log(1−p)
for 0 < p < 1 and values h(0) = h(1) = 0. That is, h(p) is the entropy of a Bernoulli(p)
random variable.4

3Another expression for mutual information in terms of divergence is: I(X;Y) = D(PX,Y ‖PX ⊗ PY),
where PX ⊗ PY is the product form distributions with the same marginal distribution as PX,Y .

4Using sans serif here because the letter h is used for something else in the next section.

196

Lemma 15.2. Let B be a random vector with values in {0, 1}N such that E [
∑

iBi] ≤ pN
for some p with 0 ≤ p ≤ 0.5. Then H(B) ≤ Nh(p).

Proof. Let pi = P {Bi = 1} . The assumption implies 1
N

∑
i pi ≤ p.

H(B) = H(B1) +H(B2|B1) + · · ·+H(BN |B1, · · · , BN−1)

≤ H(B1) +H(B2) + · · ·+H(BN)

= h(p1) + · · ·+ h(pN)

≤ Nh

(
1

N

N∑

i=1

pi

)
≤ Nh(p),

where the last two inequalities follow from the concavity of h and Jensen’s inequality, and
the fact h is increasing over the interval [0, 0.5]. �

Lemma 15.3. For any c1 ∈ (0, 1) there exists c2 ∈ (0, 1) such that whenever 0 < a < b ≤
0.25 and h(a) ≥ c1b log 1

b
(e.g. a log 1

a
≥ c1b log 1

b
) then a ≥ c2b. In particular, if c1 = 1

2
, then

c2 = 1
8

is sufficient.

Proof. Given c1 ∈ (0, 1), let c2 > 0 be so small that

c1 ≥ 2c2

[
1 +

log(1/c2)

log(1/0.25)

]
.

It is easy to check that if c1 = 1
2

then c2 = 1
8

is sufficient. We will use the fact a log 1
a
≥

(1 − a) log 1
1−a for 0 ≤ a ≤ 0.25. (The inequality is readily checked for small a and can be

checked numerically for larger a.) Suppose 0 < a < b ≤ 0.25 and h(a) ≥ c1b log 1
b
. Then,

a log
1

a
≥ 1

2
h(a) ≥ c1b

2
log

1

b

≥ c2

[
1 +

log(1/c2)

log(1/0.25)

]
b log

1

b

≥ c2

[
b log

1

b
+ b log

1

c2

]
= (bc2) log

1

bc2

The function u 7→ u log 1
u

is monotone increasing over 0 ≤ u ≤ 0.25, so it follows that
a ≥ bc2. �

15.4. Proof of Theorem 15.2

Theorem 15.2 is proved in this section. The first part of the proof closely follows the proof
of Theorem 15.1, although it is simpler in one respect; we don’t need to reserve one point
(such as xV) and insist all classifiers of the form fb assign label 0 to that point. Therefore
we don’t need the parameter p. Given N ≥ 4D, let x1, . . . , xN denote any set of points such
that the projection F(xN) contains {0, 1}ND , the set of all binary strings of length N and
Hamming weight D. For b ∈ {0, 1}ND , let fb ∈ F such that (f(x1), . . . , f(xN)) = b. Fix an
arbitrary learning algorithm A. Thus, for any n ≥ 1, and n samples (X1, Y1), . . . , (Xn, Yn),

the algorithm produces a classifier f̂n ∈ F.
Let PX denote the distribution on X that assigns probability 1

N
to each of the points

x1, . . . , xN . For any b ∈ {0, 1}ND , let Pb denote the joint probability distribution on X×{0, 1}
197

such that the marginal on X is PX , and given X, the label Y is equal to f(X) with probability
1+h

2
and to 1− f(X) with probability 1−h

2
. Note that

Lb(f) =
1− h

2
+
h

N

N∑

v=1

1{f(xv)6=bv}.

The classifier fb achieves minimum loss for Pb: L∗b = Lb(fb) = 1−h
2
. The set of all such

distributions satisfies Q̧ = {Pb : b ∈ {0, 1}ND} ⊂ P(h), so it suffices to find a lower bound on

maxb∈{0,1}ND E
n
b [Lb(f̂)]−L∗b . Let P n be the measure on {0, 1}ND × (X×{0, 1})n as in the proof

of Theorem 15.1. We find (15.16) holds (with the minor change mentioned above – there is
no parameter p, and all points xv are sampled with equal probability):

sup
P∈P(h)

(En[L(f̂n)]− L∗) ≥ max
b∈{0,1}ND

(En
b [Lb(f̂n)]− L∗b) ≥ hε(15.24)

where

ε ,
1

N

N∑

v=1

P
n{f̂n(xv) 6= Bv}.

In other words, ε is the average bit error probability, for estimation of B = (B1, . . . , BN) by

f̂n = A((X1, Y1), . . . , (Xn, Yn)), such that the joint distribution of B, (X1, Y1), . . . , (Xn, Yn)
is P

n
.

Thus, Rn(h) ≥ hminA ε. Therefore, the remainder of the proof is to obtain a lower bound
on ε for an arbitrary algorithm A. The proof differs from the proof of Theorem 15.1 for two
reasons. First, here the bits Bv are not independent – exactly D of them are equal to one
with probability one. Secondly, while each bit is Bernoulli distributed under P

n
, it has

parameter D
N

instead of 1
2
.

The idea of the proof is a variation of the idea of Fano, but it focuses directly on the
average probability of bit errors, rather than on the probability of estimating the entire block

of bits B correctly. Let B̂ = (f̂n(x1), . . . , f̂n(xN)). It is useful to think of B as the vector

of hidden bits and B̂ is the estimate of B produced by the learning algorithm A based on

the data. Let B ⊕ B̂ denote the bit-by-bit modulo two sum (i.e. XOR sum) of the hidden

bit vector B and its estimate. Thus, B ⊕ B̂ indicates the location of estimation errors. In

particular, ε = 1
N
E
n
[wH(B ⊕ B̂], where wH denotes Hamming weight. Lemma 15.2 implies

that H(B ⊕ B̂) ≤ Nh(ε). Also, H(B) = log
(
N
D

)
. Therefore,

I(B, B̂) = H(B)−H(B|B̂)

= H(B)−H(B ⊕ B̂|B̂) ≤ H(B)−H(B ⊕ B̂)

= log

(
N

D

)
−H(B ⊕ B̂)

≥ D log
N

D
−Nh(ε).

To get an upper bound on I(B; B̂) we use the fact that the label for each data sample is noisy,
limiting the information about B in each sample, and thus limiting the total information

198

about B available to the learning algorithm. Note that

I(B; B̂)
(a)

≤ I(B; (Xn, Y n))

(b)
= I(B;Xn) + I(B;Y n|Xn)

(c)
= I(B;Y n|Xn)

≤ I(B;Y n|Xn) + I(Xn;Y n)

(d)
= I((Xn, B);Y n)

where (a) follows from the fact B̂ is a function of (Xn, Y n) and the data processing theo-
rem, (b) and (d) follow from properties of conditional mutual information or, equivalently,
conditional entropy, and (c) follows by the independence of B and Xn.

To continue, we shall use the bound (15.23) based on the geometric properties of diver-
gence. If D

N
is fairly small, then most of the Bv’s are zero, so a reasonably good approximation

for the Y ’s is obtained by assuming they are independent with each having the Bernoulli
(

1−h
2

)

distribution. So let’s choose Q to be the probability distribution on {0, 1}n corresponding
to independent Bernoulli

(
1−h

2

)
random variables. That is, Q is the n-fold tensor product of

the Bern
(

1−h
2

)
distribution. By (15.23),

I((B,Xn);Y n) ≤ D(PY |Xn,B‖Q|PXn,B).(15.25)

To compute the right-hand side of (15.25), consider a fixed possible value (xn, b) of (Xn, B).
The random variables Y1, . . . , Yn are conditionally independent given (Xn, B) = (xn, b) and
they are also independent under distribution Q, so

D(PY |(Xn,B)=(xn,b)‖Q) =
n∑

i=1

D

(
PYi|(Xn,B)=(xn,b)

∥∥∥∥Bern

(
1− h

2

))
.(15.26)

The terms in the sum on the right-hand side of (15.26) fall into one of two groups. For
each i, xi = xv for some value of v, and if bv = 0 then the conditional distribution of Yi
is the Bern

(
1−h

2

)
distribution and the ith term is zero. In contrast, if xi = xv and bv = 1,

then the conditional distribution of Yi is the Bern
(

1+h
2

)
distribution, and the ith term is the

divergence distance between two Bernoulli distributions with parameters 1±h
2

, denoted by

d
(

1+h
2
‖1−h

2

)
. Thus, the right-hand side of (15.26) is md

(
1+h

2
‖1−h

2

)
, where m is the number

of times points xv were sampled such that bv is one. Since a fraction D/N of the bits in B
are ones, and the points x1, . . . , xN are sampled uniformly to produce X1, . . . , Xn, when we
average over the distribution of (Xn, B) as in the right-hand side of (15.25) we obtain:

I((B,Xn), Y n) ≤ D(PY |Xn,B‖Q|PXn,B)

=
nD

N
d

(
1 + h

2

∥∥∥∥
1− h

2

)

=
nDh

N
log

1 + h

1− h
≤
(
nD

N

)(
2h2

1− h

)
,(15.27)

199

where the last step uses the fact log t ≤ t − 1 for t > 0. Combining the upper and lower

bounds on I(B; B̂) yields
(
nD

N

)(
2h2

1− h

)
≥ D log

N

D
−Nh(ε).

or equivalently,

h(ε) ≥ D

N
log

N

D
−
(
nD

N2

)(
2h2

1− h

)
.(15.28)

A nice thing about the bound (15.28) is that it holds whenever n,D,N are positive integers
with 1 ≤ D ≤ N, and 0 ≤ h < 1. To complete the proof we use (15.28) and the assumptions
to get a lower bound on ε, and multiply that bound by h to get the lower bound on Rn(h,F).

Select N so that the second term on the right-hand side of (15.28) is less than or equal
to half the first term: (

nD

N2

)(
2h2

1− h

)
≤ 1

2

D

N
log

N

D
or equivalently,

4nh2

1− h ≤ N log
N

D
.(15.29)

Specifically, let

N =

⌊
9nh2

(1− h)
(
1 + log nh2

D

)
⌋
,

which satisfies (15.29) provided h ≥
√
D/n.5

Then

h(ε) ≥ 1

2

D

N
log

N

D
.

An application of Lemma 15.3 then shows that, under the assumption D
N
≤ 0.25,

ε ≥ D

8N
.(15.30)

Since the algorithm A is arbitrary, it follows that Rn(h,F) ≥ Dh
8N
. Using the explicit formula

for N then yields (15.9) for c = 1/72.

Remark 15.1. The ratio D
N

is the fraction of bits that have value 0, so an estimator that

estimates all the bits to equal zero has bit error probability D
N
. The bound (15.30) shows that

using the observations, the estimation error is reduced from that level by at most a constant
factor in the context of the proof.

5The fact nh2

D ≥ 1 and log u ≤ u − 1 for u ≥ 1 imply nh2/
(

1 + log nh2

D

)
≥ D ≥ 1, and hence, that

N ≥ Ñ , 8nh2

(1−h)
(
1+log nh2

D

) . Since the right-hand side of (15.29) is increasing in N , it suffices to prove (15.29)

holds with N replaced by Ñ . The inequality follows easily if it can be shown that
log(8

1+s)+s
1+s ≥ 1

2 , where

s , log nh2

D ≥ 0. The inequality is true for all s ≥ 0 because log(1 + s) ≤ log 2− 1
2 + s

2 .

200

APPENDIX A

Probability and random variables

Probability theory is the foundation of statistical learning theory. This appendix gives a
quick overview of the main concepts and sets up the notation that will be used consistently
throughout the notes. This is by no means intended as a substitute for a serious course in
probability; as a good introductory reference, see the text by Gray and Davisson [GD04],
which is geared towards beginning graduate students in electrical engineering.

Let Ω be a set. A nonempty collection F of subsets of Ω is called a σ-algebra if it has the
following two properties:

(1) If A ∈ F, then Ac ≡ Ω\A ∈ F

(2) For any sequence of sets A1, A2 . . . ∈ F, their union belongs to F:
⋃∞
i=1Ai ∈ F.

In other words, any σ-algebra is closed under complements and countable unions. This
implies, in particular, that the empty set ∅ and the entire set Ω are contained in any σ-
algebra F, and that such an F is closed under countable intersections. A pair (Ω,F) consisting
of a set and a σ-algebra is called a measurable space. A probability measure on (Ω,F) is a
function P : F → [0, 1], such that

(1) P(Ω) = 1
(2) Given any countably infinite sequence A1, A2, . . .F of pairwise disjoint sets, i.e.,

Ai ∩ Aj = ∅ for every pair i 6= j,

P

(
∞⋃

i=1

Ai

)
=
∞∑

i=1

P(Ai).

The triple (Ω,F,P) is called a probability space.
Let (X,B) be some other measurable space. A random variable on Ω with values in X is

any function X : Ω→ X with the property that, for any B ∈ B, the set

X−1(B) := {ω ∈ Ω : X(ω) ∈ B}
lies in F X is said to be a measurable mapping from (Ω,F) into (X,B)). Together, X and P
induce a probability measure PX on (X,B) by setting

PX(B) := P
(
X−1(B)

)
≡ P ({ω ∈ Ω : X(ω) ∈ B}) ,

which is called the distribution of X. (A mildly challenging character-building exercise is to
try and prove that PX is indeed a valid probability measure.) Once PX is defined, we can
typically forget all about (Ω,F,P) and just work with PX . Here are two standard examples
to keep in mind. One is when X is a finite set, B is σ-algebra consisting of all subsets of X,
and x 7→ PX{x} is the probability mass function (pmf) of X, so for any B ⊆ X,

PX(B) =
∑

x∈B

PX(x).(A.1)

201

The other is when X is the real line R, B is the set of Borel subset of R (the smallest σ-algebra
containing all open sets), and PX has a probability density function (pdf) pX , giving

PX(B) =

∫

B

pX(x)dx.(A.2)

for any B ∈ B. We will use a more abstract notation that covers these two cases (and much
more besides):

PX(B) =

∫

B

PX(dx), ∀B ∈ B.(A.3)

When seeing something like (A.3), just think of (A.1) or (A.2).
If f : X→ R is a real-valued function on X, the expected value of f(X) is

E[f(X)] =

∫

X

f(x)PX(dx);

again, think of either

E[f(X)] =
∑

x∈X

f(x)PX(x)

in the case of discrete X, or

E[f(X)] =

∫

R
f(x)pX(x)dx

in the case of X = R and a random variable with a pdf pX .
For any two jointly distributed random variables X ∈ X and Y ∈ X, we have their joint

distribution PXY , the marginals

PX(A) := PXY (A× Y) ≡
∫

A×Y
PXY (dx, dy)

PY (B) := PXY (X×B) ≡
∫

X×B
PXY (dx, dy)

for all measurable sets A ⊆ X, B ⊆ Y, and the conditional distribution

PY |X(B|A) :=
PXY (A×B)

PX(A)

of Y given that X ∈ A. Neglecting technicalities and considerations of rigor, we can define
the conditional distribution of Y given X = x, denoted by PY |X(·|x), implicitly through

PXY (A×B) =

∫

A

PX(dx)

(∫

B

PY |X(dy|x)

)
.

Here, it is helpful to think of the conditional pmf

PY |X(y|x) =
PXY (x, y)

PX(x)

in the discrete case, and of the conditional pdf

pY |X(y|x) =
pXY (x, y)

pX(x)

202

in the continuous case. The conditional expectation of any function f : X× Y → R given X,
denoted by E[f(X, Y)|X], is a random variable g(X) that takes values in R, such that for
any bounded measurable function b : X→ R, 1

E[f(X, Y)b(X)] = E[g(X)b(X)].

In other words, E[(f(X, Y)−g(X))b(X)] = 0, or f(X, Y)−g(X) is orthogonal to all bounded
measurable functions of X. In particular, taking b ≡ 1, we get the law of iterated expectations:
E[E[f(X, Y)|X]] = E[f(X, Y)].

Once again, think of

E[f(X, Y)|X = x] =
∑

y∈Y

f(x, y)PY |X(y|x)

if both X and Y are discrete sets, and of

E[f(X, Y)|X = x] =

∫

Y

f(x, y)pY |X(y|x)dy

if both X and Y are subsets of R.

Theorem A.1. (Jensen’s inequality) Let ϕ be a convex function and let X be a random
variable such that E[X] is finite. Then E[ϕ(X)] ≥ ϕ(E[X]).

For example, Jensen’s inequality implies that E[X2] ≥ E[X]2, which also follows from
the fact Var(X) = E[X2]− E[X]2.

Proof. Since ϕ is convex, there is a tangent to the graph of ϕ at E[X]. Equivalently,
there is a subgradient g of ϕ at E[X], meaning that

ϕ(x) ≥ ϕ(E[X]) + 〈g, x− E[X]〉(A.4)

for all x. Replacing x by X and taking the expectation on each side of (A.4) yields the
result. �

1As usual, we are being rather cavalier with the definitions here, since the choice of g is not unique;
one typically speaks of different versions of the conditional expectation, which, properly speaking, should be
defined w.r.t. the σ-algebra generated by X.

203

Bibliography

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[Bar98] P. L. Bartlett. The sample complexity of pattern classification with neural networks: the size of

the weights is more important than the size of the network. IEEE Transactions on Information
Theory, 44(2):525–536, 1998.

[BCN16] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
arXiv preprint 1606.04838, 2016.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik–
Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

[BFT17] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems (NIPS), 2017.

[BHM18] Mikhail Belkin, Daniel J. Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds
for classification and regression rules that interpolate. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31, pages 2300–2311, 2018.

[BLM13] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford University Press, 2013.

[BM02] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: risk bounds and
structural results. Journal of Machine Learning Research, 3:463–482, 2002.

[BRT19] Mikhail Belkin, Alexander Rakhlin, and Alexandre B. Tsybakov. Does data interpolation con-
tradict statistical optimality? In Proceedings of Machine Learning Research, volume 89, pages
1611–1619, 2019.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[CBCG04] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning

algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.
[CFZ09] B. Clarke, E. Fokoué, and H. H. Zhang. Principles and Theory for Data Mining and Machine

Learning. Springer, 2009.
[Che52] H. Chernoff. A meausre of asymptotic efficiency of tests of a hypothesis based on the sum of

observations. Annals of Mathematical Statistics, 23:493–507, 1952.
[CZ07] F. Cucker and D. X. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cambridge

University Press, 2007.
[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,

1996.
[DL01] L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, 2001.
[Dud78] R. M. Dudley. Central limit theorems for empirical measures. Annals of Probability, 6:899–929,

1978.
[Dwo06] C. Dwork. Differential privacy. In Proceedings of the International Colloquium on Automata,

Languages, and Programming (ICALP), pages 1–12, 2006.
[FM09] J.C. Ferreira and V.A. Menegatto. Eigenvalues of integral operators defined by smooth positive

definite kernels. Integral Equations and Operator Theory, 64(1):61–81, 2009.
[Fra87] P. Frankl. The shifting technique in extremal set theory. In Surveys in Combinatorics, 1987

(New Cross, 1987), vol. 123 of London Math Soc. Lecture Note Ser., volume 123, pages 81–110.
Cambridge University Press, 1987.

[Fra91] P. Frankl. Shadows and shifting. Graphs and Combinatorics, 7:23–29, 1991.

204

[FS97] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

[GD04] R. M. Gray and L. D. Davisson. An Introduction to Statistical Signal Processing. Cambridge
University Press, 2004.

[GG92] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer, 1992.
[GN98] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions on Information Theory,

44(6):2325–2383, October 1998.
[GRS17] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural net-

works. arXiv preprint 1712.06541, 2017.
[GZ84] E. Giné and J. Zinn. Some limit theorems for empirical processes. The Annals of Probability,

12:929–989, 1984.
[HAK07] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimiza-

tion. Machine Learning, 69(2-3):169–192, 2007.
[Hau92] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other

learning applications. Information and Computation, 95:129–161, 1992.
[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the

American Statistical Association, 58:13–30, 1963.
[HR90] T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Information Processing Letters,

33(6):305–308, 1990.
[HRS16] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: stability of stochastic gradient

descent. In Proceedings of the 33rd International Conference on Machine Learning (ICML),
pages 1225–1234, 2016. arXiv preprint 1509.01240.

[KAA+00a] V. Koltchinskii, C. T. Abdallah, M. Ariola, P. Dorato, and D. Panchenko. Improved sample
complexity estimates for statistical learning control of uncertain systems. IEEE Transactions
on Automatic Control, 45(12):2383–2388, 2000.

[KAA+00b] V. Koltchinskii, C. T. Abdallah, M. Ariola, P. Dorato, and D. Panchenko. Statistical learning
control of uncertain systems: it is better than it seems. Technical Report EECE-TR-00-001,
University of New Mexico, April 2000.

[Kai67] Thomas Kailath. The divergence and Bhattacharyya distance measures in signal selection. IEEE
transactions on communication technology, 15(1):52–60, 1967.

[KP02] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the general-
ization error of combined classifiers. Annals of Statistics, 30(1):1–50, 2002.

[KV94] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, 1994.

[Lin01] T. Linder. Learning-theoretic methods in vector quantization. In L. Györfi, editor, Principles
of Nonparametric Learning. Springer, 2001.

[LLZ94] T. Linder, G. Lugosi, and K. Zeger. Rates of convergence in the source coding theorem, in empir-
ical quantizer design, and in universal lossy source coding. IEEE Transactions on Information
Theory, 40(6):1728–1740, November 1994.

[LS99] D. D. Lee and H. S. Seung. Learing the parts of objects by nonnegative matrix factorization.
Nature, 401:788–791, 1999.

[LT91] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes.
Springer, 1991.

[McD89] C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, pages
148–188. Cambridge University Press, 1989.

[Men03] S. Mendelson. A few notes on statistical learning theory. In S. Mendelson and A. J. Smola,
editors, Advanced Lectures in Machine Learning, volume 2600 of Lecture Notes in Computer
Science, pages 1–40. Springer, 2003.

[MN06] P. Massart and É. Nédélec. Risk bounds for statistical learning. Annals of Statistics, 34(5):2326–
2366, 2006.

[MP69] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT
Press, 1969.

205

[MP10] A. Maurer and M. Pontil. K-dimensional coding schemes in Hilbert spaces. IEEE Transactions
on Information Theory, 56(11):5839–5846, November 2010.

[MT07] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 94–103,
2007.

[NS15] K. Nissim and U. Stemmer. On the generalization properties of differential privacy. arXiv
preprint 1504.05800, April 2015.

[Paj85] A. Pajor. Sous-espaces ln1 des espaces de Banach. In Travaux en Course [Works in Progress],
volume 16. Hermann, Paris, 1985.

[Pol82] D. Pollard. Quantization and the method of k-means. IEEE Transactions on Information The-
ory, IT-28(2):199–205, March 1982.

[Pol87] B. T. Polyak. Introduction to Optimization. Translation Series in Mathematics and Engineering.
Optimization Software, 1987.

[Sau72] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13:145–
147, 1972.

[SFBL98] R. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: a new explanation
for the effectiveness of voting methods. Annals of Statistics, 26:1651–1686, 1998.

[She72] S. Shelah. A combinatorial problem: stability and order for models and theories in infinity
languages. Pacific Journal of Mathematics, 41:247–261, 1972.

[SHS01] B. Schölkopf, R. Herbrich, and A. Smola. A generalized representer theorem. In D. Helmbold
and B. Williamson, editors, Computational Learning Theory, volume 2111 of Lecture Notes in
Computer Science, pages 416–426. Springer, 2001.

[Sle62] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell Systems Technical Journal,
41:463–501, 1962.

[SSBD14] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

[SSSS10] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability, and uniform
convergence. Journal of Machine Learning Research, 11:2635–2670, 2010.

[Sti86] S. M. Stigler. The History of Statistics: The Measurement of Uncertainty Before 1900. Harvard
University Press, 1986.

[Tal14] Michel Talagrand. Upper and Lower Bounds of Stochastic Processes: Modern Methods and
Classical Problems. Springer, 2014.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.
[Vap98] V. Vapnik. Statistical Learning Theory. Wiley, 1998.
[VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. Theory of Probability and Its Applications, 16:264–280, 1971.
[Vid98] M. Vidyasagar. Statistical learning theory and randomized algorithms for control. IEEE Control

Systems Magazine, 18(6):162–190, 1998.
[Vid01] M. Vidyasagar. Randomized algorithms for robust controller synthesis using statistical learning

theory. Automatica, 37:1515–1528, 2001.
[Vid03] M. Vidyasagar. Learning and Generalization. Springer, 2 edition, 2003.
[WD81] R. S. Wencour and R. M. Dudley. Some special Vapnik–Chervonenkis classes. Discrete Mathe-

matics, 33:313–318, 1981.
[Zha04] T. Zhang. Statistical behavior and consistency of classification methods based on convex risk

minimization. The Annals of Statistics, 32(1):56–134, 2004.
[Zin03] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proc.

20th Int. Conf. Machine Learning (ICML-2003), 2003.

206

Index

agnostic learning problem, 44

Cauchy sequence, 31
complete space, 31
concept learning, 45
contraction principle for Rademacher averages, 69
convex function, 26
convex set, 25

Dudley classes, 77

empirical risk minimization (ERM), 56

finite class lemma, 69
finite concept class, 48, 59
first-order optimality condition, 26
fundamental theorem of concept learning, 85

Hessian matrix, 25
Hessian of a function, 25
Hilbert space, 31

inequalities
Azuma-Hoeffding, 16
Cauchy-Schwarz, 30
Chebyshev, 12
Chernoff, 13
Hoeffding, 15
Hoeffding lemma, 13
Jensen, 203
Markov, 11
McDiarmid, 16
subgaussian maximal, 23

infimum, 24
inner product space, 30

Jacobian of a function, 24

kernel Gram matrix, 34

Mercer kernel, 34
minimizer, 24
mismatched minimization lemma, 60

model-free learning problem, 44

PAC property of an algorithm
abstract setting, 54
concept learning, 46
function learning, 48

penalty function, 87
positive semidefinite, 25
projection onto a convex set, 33

Rademacher average, 64
realizable learning problem, 44

sequential convergence, 31
shatter coefficient, 74
smooth function, 27
strong convexity, 26
subdifferential, 26
subgaussian random variable, 22
subgradient, 26
support of a binary vector, 80
supremum, 24
surrogate loss function, 87
symmetrization argument, 65
symmetrization trick, 66

uniform convergence of empirical means
(UCEM), 57

Weierstrass extreme value theorem, 24

207

	Part 1. Preliminaries
	Chapter 1. Introduction
	1.1. A simple example: coin tossing
	1.2. From estimation to prediction
	1.3. Goals of learning

	Chapter 2. Concentration inequalities
	2.1. The basic tools
	2.2. The Chernoff bounding trick and Hoeffding's inequality
	2.3. From bounded variables to bounded differences: McDiarmid's inequality
	2.4. McDiarmid's inequality in action
	2.5. Subgaussian random variables

	Chapter 3. Minima, convexity, strong convexity, and smoothness of functions
	3.1. The minima of a function
	3.2. Derivatives of functions of several variables
	3.3. Convex sets and convex functions
	3.4. Strongly convex functions
	3.5. Smooth convex functions

	Chapter 4. Function spaces determined by kernels
	4.1. The basics of Hilbert spaces
	4.2. Reproducing kernel Hilbert spaces
	4.3. Kernels and weighted inner products

	Part 2. Basic Theory
	Chapter 5. Formulation of the learning problem
	5.1. The realizable case
	5.2. Examples of PAC-learnable concept classes
	5.3. Agnostic (or model-free) learning
	5.4. Empirical risk minimization
	5.5. The mismatched minimization lemma

	Chapter 6. Empirical Risk Minimization: Abstract risk bounds and Rademacher averages
	6.1. An abstract framework for ERM
	6.2. Bounding the uniform deviation: Rademacher averages
	6.3. Structural results for Rademacher averages
	6.4. Spoiler alert: A peek into the next two chapters

	Chapter 7. Vapnik–Chervonenkis classes
	7.1. Vapnik–Chervonenkis dimension: definition
	7.2. Examples of Vapnik–Chervonenkis classes
	7.3. Growth of shatter coefficients: the Sauer–Shelah lemma

	Chapter 8. Binary classification
	8.1. The fundamental theorem of concept learning
	8.2. Risk bounds for combined classifiers via surrogate loss functions
	8.3. Weighted linear combination of classifiers
	8.4. AdaBoost
	8.5. Neural nets
	8.6. Kernel machines
	8.7. Convex risk minimization

	Chapter 9. Regression with quadratic loss
	9.1. Constraint regularized least squares in RKHS
	9.2. Penalty regularized least squares in an RKHS

	Part 3. Some Applications
	Chapter 10. Empirical vector quantization
	10.1. A brief introduction to source coding
	10.2. Fixed-rate vector quantization
	10.3. Learning an optimal quantizer
	10.4. Finite sample bound for empirically optimal quantizers

	Chapter 11. Dimensionality reduction in Hilbert spaces
	11.1. Examples
	11.2. Proof of Theorem 11.1
	11.3. Linear operators between Hilbert spaces

	Chapter 12. Stochastic simulation via Rademacher bootstrap
	12.1. Empirical Risk Minimization: a quick review
	12.2. Empirical Rademacher averages
	12.3. Sequential learning algorithms
	12.4. A sequential algorithm for stochastic simulation
	12.5. Technical lemma

	Part 4. Advanced Topics
	Chapter 13. Stability of learning algorithms
	13.1. An in-depth view of learning algorithms
	13.2. Learnability without uniform convergence
	13.3. Learnability and stability
	13.4. Stability of stochastic gradient descent
	13.5. Analysis of Stochastic Gradient Descent
	13.6. Differentially private algorithms and generalization
	13.7. Technical lemmas

	Chapter 14. Online optimization algorithms
	14.1. Online convex programming and a regret bound
	14.2. Online perceptron algorithm
	14.3. On the generalization ability of online learning algorithms

	Chapter 15. Minimax lower bounds
	15.1. The Bhattacharyya coefficient and bounds on average error for binary hypothesis testing
	15.2. Proof of Theorem 15.1
	15.3. A bit of information theory
	15.4. Proof of Theorem 15.2

	Appendix A. Probability and random variables
	Bibliography
	Index

